Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When Proteins Shake Hands


Materials scientists from Jena (Germany) create innovative nanomaterial from natural substances

Be it in spider silk, wood, the spaces between body cells, in tendons, or as a natural sealant for small wounds: protein fibres are found virtually everywhere in nature. These small protein fibres, also referred to as protein nanofibres by experts, often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.

Hybrid protein nanofibers at formation.

(Dr Izabela Firkowska-Boden/FSU Jena)

Artificially creating these fibres is not easy, much less assigning them specific functions. That and how fibres with new properties can be successfully created is now being reported by materials scientists from Friedrich Schiller University Jena (Germany) in the latest issue of the renowned journal ‘ACS NANO’ (DOI: 10.1021/acsnano.7b07196). This is a result of a collaboration with a team from the Leibniz Institute of Photonic Technology in Jena (Leibniz-IPHT).

“Protein fibres consist of several natural protein macromolecules”, explains Prof. Dr. Klaus D. Jandt from the Otto Schott Institute of Materials Research at Jena University, and continues: “Nature builds these nanomaterials, whose diameter is roughly a 1,000 times smaller than that of a human hair, by way of self-assembly processes.” What presents little difficulty for nature with its millions of years of experience is usually not that easy to create under laboratory condition. Prof. Jandt and his team have in recent years nonetheless succeeded in creating protein nanofibres from the natural proteins fibrinogen and fibronectin and controlling their size and structure – linear or branched.

Protein nanofibres with defined properties

The researchers of Prof. Jandt’s group next aimed to predefine specific properties of the protein nanofibres for their later use as components in biosensors, drug delivery particles, optical probes, or bone cements. To do this, the researchers from Jena came up with the idea of combining two different proteins in a self-assembling protein nanofibre to create new fibre properties this way.

Jandt and his team were successful: They used the protein albumin, which is responsible for the osmotic pressure in blood, and haemoglobin, the protein of the red blood pigment facilitating oxygen transport in the blood. The scientists dissolved both these proteins in ethanol and then heated them to 65 °C. Over several interim stages, this resulted in the apparently autonomous formation of new hybrid protein nanofibres containing both proteins for the very first time. This involves a so-called handshake between the two proteins, meaning that similar sections of both combine to form a fibre.

“Proving that these new hybrid protein nanofibres indeed contain both proteins was not easy as the new fibres are so tiny that there are hardly any microscopy methods able to see details in them”, explains Klaus Jandt and adds: “We were provided with decisive support for this proof by Prof. Deckert and his team from the Leibniz Institute of Photonic Technology.” Prof. Dr Volker Deckert and his team found optical signals in the new hybrid nanofibres that are as typical for albumin and haemoglobin as a fingerprint is for a person. They relied on so-called tip-enhanced Raman spectroscopy (TERS) for this. “The method's extreme sensitivity allowed us to identify the different proteins even without special markers, and also permitted their unambiguous classification in close cooperation with Prof. Jandt's colleagues”, says Prof. Deckert from the Leibniz-IPHT in Jena.

Biomimetic principles for the materials of the future

The scientists from Jena look upon the creation and proof of the new nanofibres comprising several proteins as a breakthrough. The innovative fibres can now be used for the targeted construction of all together new, larger structures with the desired properties that could not be created so far. Networks of the new nanofibres are to be used as a new material for regenerating bone and cartilage in the future, for example. Prof. Jandt is convinced that “this has opened the door for a completely new generation of functional materials for medical engineering, nanoelectronics, sensorics, or optics, all based on natural substances and construction principles”, and adds: “These biomimetic principles will have a decisive effect on the materials of the future.” The scientists from Jena are confident that this new self-organization approach can also be successfully transferred to other proteins as long as they feature identical amino acid sequences in parts.

This project was supported by the German Research Foundation DFG under the project name “Novel functional materials based on self-assembled protein nanofibers: creating and understanding nanofibers”.

Original publication:
Christian Helbing, Tanja Deckert-Gaudig, Izabela Firkowska-Boden, Gang Wei, Volker Deckert , and Klaus D. Jandt: Protein Handshake on the Nanoscale: How Albumin and Hemoglobin Self-Assemble into Nanohybrid Fibers. ACS NANO (2018). DOI: 10.1021/acsnano.7b07196

Prof. Dr Klaus D. Jandt
Otto Schott Institute of Materials Research of Friedrich Schiller University Jena
Loebdergraben 32, 07743 Jena
Phone: +49 (0)3641 / 947730
Email: k.jandt[at]

Prof. Dr Volker Deckert
Leibniz Institute of Photonic Technology
Albert-Einstein-Straße 9
07745 Jena
Email: volker.deckert[at]

Weitere Informationen:

Axel Burchardt | idw - Informationsdienst Wissenschaft

Further reports about: ACS Photonic Protein functional materials haemoglobin nanofibers proteins

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

Science & Research
Overview of more VideoLinks >>>