Vortices get organized

A crystal consisting not of atoms but exotic swirling magnetic entities, called skyrmions, has been identified at near room-temperature by Yoshinori Tokura of the RIKEN Advanced Science Institute, Wako, and his colleagues from several other institutes in Japan[1].

Previous observations of a skyrmion crystal state, in transition-metal–silicide materials, have been at cryogenic temperatures below 40 kelvin. The existence of skyrmions at room temperature improves the practicality of harnessing their potential for use in novel computer memories.

Skyrmions are formed on some surfaces when the spins of the electrons—think of an arrow about which each electron rotates—collectively arrange such that they wrap around the surface of a sphere (Fig. 1). This pattern spirals in such a way that the spins on the outside point up whereas those at the core point down. This collection of spins can display many properties associated with a single particle. “A skyrmion crystal is the periodic array of these particle-like entities,” explains Tokura.

Earlier neutron-scattering experiments by other researchers identified this unusual effect in both iron–cobalt silicide and manganese silicide. Tokura and his team, however, investigated skyrmions in iron germanium. This alloy has the same cubic atomic crystal structure as iron–cobalt silicide and manganese silicide—the two materials in which skyrmions have been observed at low temperatures; but it remains in the necessary magnetic structure up to a much higher temperature.

Using a transmission electron microscope, the researchers probed the magnetization on the surface of polished layers of the iron–germanium alloy. They found tell-tale signs of skyrmions at temperatures up to 260 kelvin, particularly when they applied a small magnetic field perpendicularly to the surface.

This material also provides an excellent opportunity to investigate the stability of the skyrmion crystal, the team notes. Previous studies focused on very thin layers of material. Tokura and his team investigated the influence of film thickness and found that for thicknesses greater than the distance between skyrmions, about 75 nanometers in this case, the skyrmion crystal state is suppressed and a more conventional ferromagnetic phase starts to dominate.

Skyrmions could play an important role in the development of spintronics—using electron spin to carry information in the same way that electron charge is used in conventional electronics. “Skyrmion crystals could also be applied in memory and logic devices,” says Tokura. The advantage over conventional systems is that control is achieved using electric, rather than magnetic fields, which is known to be more efficient.

The corresponding author for this highlight is based at the Emergent Materials Department, RIKEN Advanced Science Institute

Journal information

[1] Yu, X.Z., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W.Z., Ishiwata, S., Matsui, Y. & Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nature Materials 10, 106–109 (2011).

Media Contact

gro-pr Research asia research news

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors