Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UV sphere makes applying paint quick and easy

23.03.2018

Cars, furniture, electronic enclosures – all sorts of things are painted. However, the usual paint drying processes have attracted criticism on account of high energy consumption. A new refined system reduces energy requirements, sustainably protects the environment and drastically shortens cycle times.

There are two options when it comes to curing painted components: Either you can dry them with warmth, which takes a relatively long time and requires a lot of energy, or you can irradiate them with UV light. However, there are limitations to the usual UV curing methods for industrial applications if the component has a complex shape.


The inside of the approximate UV sphere made from triangles with four shift sticks. The upper section of the pilot system can be opened for loading and unloading.

Fraunhofer IPA/Rainer Bez


Four painted shift sticks in the test facility.

Fraunhofer IPA/Rainer Bez

In this case, the light source or the part must be readjusted several times, and even then not all surfaces are optimally reached. A consortium of companies and institutes have now developed a system that makes this redundant, works quickly and saves energy.

It is based on the following principle: if you beam light into the inside of a sphere, it is almost perfectly scattered by the multiple reflections off the walls. If the part is placed inside a sphere, all of its surfaces receive the same amount of UV irradiation, without the effort of adjusting the part.

Sphere made from 20 triangles

The engineers did not use a perfect sphere, instead using an approximate spherical shape made up of 20 flat triangles, which is easier to manufacture. The internal surface is made from Teflon, which reflects over 80% of the radiation and is also dirt-repellant and UV-resistant.

The UV light sources weren’t the conventional mercury vapor lamps either; they were innovative high-performance LED spotlights that use very little energy, have short warm up times, can be turned off quickly and have a long useful life. Alfred Feilen, CEO at Easytec confirms: »The UV LED lamps have particularly advantageous properties for integration into the UV sphere. The small dimensions, high optical output density and quick cyclability makes them the ideal radiation source for this application.«

Furthermore, a new paint was used that was ideal for the system. However, conventional paints can be used too, even those that are cured without inert gas.

Cures in seconds

The prototype that has now been developed meets all expectations. Rainer Röck, the inventor and patent holder, is delighted: »We even placed 3D components that have several layers of paint in the patented UV sphere, turned on the high-performance UV LEDs and in the space of a few seconds of UV pulsing, the paint layer cured evenly.

And that goes for components with complex shapes, indentations and holes too. The great thing about this is that neither the UV rays nor the components need to be moved or adjusted, regardless of the size and shape of the components.«

Curing times are reduced to just a few seconds, which now enables short cycle times. Energy consumption is decreased to about a twentieth of the amount used for thermal drying processes. As the paint’s solvent content is considerably lower (and in some cases is actually zero), waste air does not need to be removed by suction. Moreover, the innovative system requires significantly less production area than standard systems.

On top of this, the system is scalable, so it can be manufactured to any size and can also be integrated into existing systems. The Head of Functional Coatings at Ritzi Lakiertechnik GmbH, Hartmut Jundt is pleased: »As a user, I am particularly delighted that parts from any structure can be dried quickly and effectively without programming work. Replacing parts has become a lot less daunting!«

Profile
The »UV sphere pulse system for 3D paint curing« project was supported by the Federal Ministry for Economic Affairs and Energy and spanned three years. In addition to the Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Durst Lackier- und Trocknungsanlagen GmbH, Easytec GmbH, Institute of Industrial Manufacturing and Management IFF of the University of Stuttgart, Opsytec Dr. Gröbel GmbH and Ritzi Lackiertechnik GmbH were all also involved in the project.

Press communication
Jörg-Dieter Walz | Telephone +49 711 970-1667 | presse@ipa.fraunhofer.de

Specialist contact
Jörg Schieweck | Telephone +49 711 970-1874 | joerg.schieweck@ipa.fraunhofer.de

Weitere Informationen:

http://www.durst-lackieranlagen.de/de/
http://www.easytecgmbh.de
http://www.iff.uni-stuttgart.de/
http://www.opsytec.de/
http://www.ritzi-lackiertechnik.de/

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>