Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTA researcher creates hydrogels capable of complex movement

14.09.2018

Programmable materials

Living organisms expand and contract soft tissues to achieve complex, 3-D movements and functions, but replicating those movements with man-made materials has proven challenging.


In the lab, Kyungsuk Yum fabricates manmade life-like materials.

Credit: UT Arlington

A University of Texas at Arlington researcher recently published groundbreaking research in Nature Communications that shows promise in finding a solution.

Kyungsuk Yum, an assistant professor in UTA's Materials Science and Engineering Department, and his doctoral student, Amirali Nojoomi, have developed a process by which 2-D hydrogels can be programmed to expand and shrink in a space- and time-controlled way that applies force to their surfaces, enabling the formation of complex 3-D shapes and motions.

This process could potentially transform the way soft engineering systems or devices are designed and fabricated. Potential applications for the technology include bioinspired soft robotics, artificial muscles - which are soft materials that change their shapes or move in response to external signals as our muscles do - and programmable matter. The concept is also applicable to other programmable materials.

"We studied how biological organisms use continuously deformable soft tissues such as muscle to make shapes, change shape and move because we were interested in using this type of method to create dynamic 3-D structures," Yum said.

His approach uses temperature-responsive hydrogels with local degrees and rates of swelling and shrinking. Those properties allow Yum to spatially program how the hydrogels swell or shrink in response to temperature change using a digital light 4-D printing method he developed that includes three dimensions plus time.

Using this method, Yum can print multiple 3-D structures simultaneously in a one-step process. Then, he mathematically programs the structures' shrinking and swelling to form 3-D shapes, such as saddle shapes, wrinkles and cones, and their direction.

He also has developed design rules based on the concept of modularity to create even more complex structures, including bioinspired structures with programmed sequential motions. This makes the shapes dynamic so they can move through space. He also can control the speed at which the structures change shape and thus create complex, sequential motion, such as how a stingray swims in the ocean.

"Unlike traditional additive manufacturing, our digital light 4-D printing method allows us to print multiple, custom-designed 3-D structures simultaneously. Most importantly, our method is very fast, taking less than 60 seconds to print, and thus highly scalable."

"Dr. Yum's approach to creating programmable 3D structures has the potential to open many new avenues in bioinspired robotics and tissue engineering. The speed with which his approach can be applied, as well as its scalability, makes it a unique tool for future research and applications," Meletis said.

###

Yum's paper, "Bioinspired 3D structures with programmable morphologies and motions," was published in the Sept. 12 issue of Nature Communications.

The research is an example of data-driven discovery, one of the themes of UTA's Strategic Plan 2020: Bold Solutions | Global Impact, said Stathis Meletis, chair of the Materials Science and Engineering Department.

Written by Jeremy Agor

Media Contact

Herb Booth
hbooth@uta.edu
817-272-7075

 @utarlington

http://www.uta.edu 

Jeremy Agor | EurekAlert!

Further reports about: 3-D structures 3D structures Materials Science hydrogels muscles soft tissues

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
14.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>