Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Researchers find seed coats could lead to strong, tough, yet flexible materials

08.08.2018

Inspired by elements found in nature, researchers at the University of New Hampshire say the puzzle-like wavy structure of the delicate seed coat, found in plants like succulents and some grasses, could hold the secret to creating new smart materials strong enough to be used in items like body armor, screens, and airplane panels.

"The seed coat's major function is to protect the seed but it also needs to become soft to allow the seed to germinate, so the mechanical property changes," said Yaning Li, associate professor of mechanical engineering. "By learning from nature it may be possible to tailor the geometry and create the architecture for a smart material that can be programmed to amplify the strength and toughness but also be flexible and have many different applications."


Characteristic features of the seedcoat of Portulaca oleracea , an annual succulent commonly known as verdolaga or purslane. A) Photograph of the P. oleracea flower, B) Photograph of the tiny black seeds from P.oleracea , C) SEM image of the P. oleracea seedcoat, D) a magnified area of the seedcoat of P.oleracea.

Credit: UNH

The building blocks of the seed coat are star-shaped epidermal cells which move by zigzag intercellular joints to form a compact, tiled exterior that protects the seed inside from mechanical damage and other environmental stresses, such as drought, freezing, and bacterial infection.

To better understand the relationship between the structural attributes and functions of the seed coat's unique microstructure, prototypes were designed and fabricated using multi-material 3D printing, and mechanical experiments and finite element simulations were performed on the models.

"Imagine a window, or the exterior of an airplane, that is really strong but not brittle," said Li. "That same concept could create smart material that could be adapted to behave differently in different situations whether it's a more flexible body armor that is still protective or another such materials."

The results, published in the journal Advanced Materials, show that the waviness of the mosaic-like tiled structures of the seed coat, called sutural tessellations, plays a key role in determining the mechanical response. Generally, the wavier it is, the more an applied loads can effectively transit from the soft wavy interface to the hard phase, and therefore both overall strength and toughness can simultaneously be increased.

Researchers say that the design principles described show a promising approach for increasing the mechanical performance of tiled composites of man-made materials. Since the overall mechanical properties of the prototypes could be tuned over a very large range by simply varying the waviness of the mosaic-like structures, they believe it can provide a roadmap for the development of new functionally graded composites that could be used in protection, as well as energy absorption and dissipation.

There is a pending patent which has been filed by UNHInnovation, which advocates for, manages, and promotes UNH's intellectual property.

###

This work was supported by National Science Foundation (NSF) and U.S. Air Force Office of Scientific Research (AFOSR).

For more information on licensing this patent-pending technology, contact unh.innovation@unh.edu.

The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study. UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

IMAGE AND VIDEOS FOR DOWNLOAD:

Photo 1: https://www.unh.edu/unhtoday/sites/default/files/media/yaning_li_seed_coat_images.jpg
Caption: Characteristic features of the seedcoat of Portulaca oleracea , an annual succulent commonly known as verdolaga or purslane. A) Photograph of the P. oleracea flower, B) Photograph of the tiny black seeds from P.oleracea , C) SEM image of the P. oleracea seedcoat, D) a magnified area of the seedcoat of P.oleracea. Photo credit: UNH

Video 1: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0001-S1.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=90°)) under vertical tension, that creates stress and strain in the material in direction 1.

Video 2: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0002-S2.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=90°)) under vertical tension, that creates stress and strain in the material in direction 2.

Video 3: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0003-S3.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=10°)) under vertical tension, that creates stress and strain in the material in direction 1.

Video 4: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0004-S4.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=10°)) under vertical tension, that creates stress and strain in the material in direction 2.

Robbin Ray | idw - Informationsdienst Wissenschaft
Further information:
https://www.unh.edu/unhtoday/news/release/2018/08/08/unh-researchers-find-seed-coats-could-lead-strong-tough-yet-flexible
http://dx.doi.org/10.1002/adma.201800579

More articles from Materials Sciences:

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

nachricht High entropy alloys hold the key to studying dislocation avalanches in metals
16.10.2018 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>