Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Researchers find seed coats could lead to strong, tough, yet flexible materials

08.08.2018

Inspired by elements found in nature, researchers at the University of New Hampshire say the puzzle-like wavy structure of the delicate seed coat, found in plants like succulents and some grasses, could hold the secret to creating new smart materials strong enough to be used in items like body armor, screens, and airplane panels.

"The seed coat's major function is to protect the seed but it also needs to become soft to allow the seed to germinate, so the mechanical property changes," said Yaning Li, associate professor of mechanical engineering. "By learning from nature it may be possible to tailor the geometry and create the architecture for a smart material that can be programmed to amplify the strength and toughness but also be flexible and have many different applications."


Characteristic features of the seedcoat of Portulaca oleracea , an annual succulent commonly known as verdolaga or purslane. A) Photograph of the P. oleracea flower, B) Photograph of the tiny black seeds from P.oleracea , C) SEM image of the P. oleracea seedcoat, D) a magnified area of the seedcoat of P.oleracea.

Credit: UNH

The building blocks of the seed coat are star-shaped epidermal cells which move by zigzag intercellular joints to form a compact, tiled exterior that protects the seed inside from mechanical damage and other environmental stresses, such as drought, freezing, and bacterial infection.

To better understand the relationship between the structural attributes and functions of the seed coat's unique microstructure, prototypes were designed and fabricated using multi-material 3D printing, and mechanical experiments and finite element simulations were performed on the models.

"Imagine a window, or the exterior of an airplane, that is really strong but not brittle," said Li. "That same concept could create smart material that could be adapted to behave differently in different situations whether it's a more flexible body armor that is still protective or another such materials."

The results, published in the journal Advanced Materials, show that the waviness of the mosaic-like tiled structures of the seed coat, called sutural tessellations, plays a key role in determining the mechanical response. Generally, the wavier it is, the more an applied loads can effectively transit from the soft wavy interface to the hard phase, and therefore both overall strength and toughness can simultaneously be increased.

Researchers say that the design principles described show a promising approach for increasing the mechanical performance of tiled composites of man-made materials. Since the overall mechanical properties of the prototypes could be tuned over a very large range by simply varying the waviness of the mosaic-like structures, they believe it can provide a roadmap for the development of new functionally graded composites that could be used in protection, as well as energy absorption and dissipation.

There is a pending patent which has been filed by UNHInnovation, which advocates for, manages, and promotes UNH's intellectual property.

###

This work was supported by National Science Foundation (NSF) and U.S. Air Force Office of Scientific Research (AFOSR).

For more information on licensing this patent-pending technology, contact unh.innovation@unh.edu.

The University of New Hampshire is a flagship research university that inspires innovation and transforms lives in our state, nation and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study. UNH's research portfolio includes partnerships with NASA, NOAA, NSF and NIH, receiving more than $100 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

IMAGE AND VIDEOS FOR DOWNLOAD:

Photo 1: https://www.unh.edu/unhtoday/sites/default/files/media/yaning_li_seed_coat_images.jpg
Caption: Characteristic features of the seedcoat of Portulaca oleracea , an annual succulent commonly known as verdolaga or purslane. A) Photograph of the P. oleracea flower, B) Photograph of the tiny black seeds from P.oleracea , C) SEM image of the P. oleracea seedcoat, D) a magnified area of the seedcoat of P.oleracea. Photo credit: UNH

Video 1: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0001-S1.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=90°)) under vertical tension, that creates stress and strain in the material in direction 1.

Video 2: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0002-S2.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=90°)) under vertical tension, that creates stress and strain in the material in direction 2.

Video 3: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0003-S3.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=10°)) under vertical tension, that creates stress and strain in the material in direction 1.

Video 4: https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fadma.201800579&file=adma201800579-sup-0004-S4.MP4
Caption: Mechanical experiment of 3D printed specimen of design I (with suture tessellation (θm=10°)) under vertical tension, that creates stress and strain in the material in direction 2.

Robbin Ray | idw - Informationsdienst Wissenschaft
Further information:
https://www.unh.edu/unhtoday/news/release/2018/08/08/unh-researchers-find-seed-coats-could-lead-strong-tough-yet-flexible
http://dx.doi.org/10.1002/adma.201800579

More articles from Materials Sciences:

nachricht Machine learning methods provide new insights into organic-inorganic interfaces
04.08.2020 | Technische Universität Graz

nachricht Unusual electron sharing found in cool crystal
31.07.2020 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>