Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis

12.03.2019

Discovery allows scientists to look at how 2D materials move with ultrafast precision.

Using a never-before-seen technique, scientists have found a new way to use some of the world's most powerful X-rays to uncover how atoms move in a single atomic sheet at ultrafast speeds.


This image shows the experimental setup for a newly developed technique: ultrafast surface X-ray scattering. This technique couples an optical pump with an X-ray free-electron laser probe to investigate molecular dynamics on the femtosecond time scale.

Image by Haidan Wen

The study, led by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and in collaboration with other institutions, including the University of Washington and DOE's SLAC National Accelerator Laboratory, developed a new technique called ultrafast surface X-ray scattering.

This technique revealed the changing structure of an atomically thin two-dimensional crystal after it was excited with an optical laser pulse.

"Extending [surface X-ray scattering] to do ultrafast science in single-layer materials represents a major technological advance that can show us a great deal about how atoms behave at surfaces and at the interfaces between materials." -- Argonne scientist Haidan Wen

Unlike previous surface X-ray scattering techniques, this new method goes beyond providing a static picture of the atoms on a material's surface to capture the motions of atoms on timescales as short as trillionths of a second after laser excitation.

Static surface X-ray scattering and some time-dependent surface X-ray scattering can be performed at a synchrotron X-ray source, but to do ultrafast surface X-ray scattering the researchers needed to use the Linac Coherent Light Source (LCLS) X-ray free-electron laser at SLAC. This light source provides very bright X-rays with extremely short exposures of 50 femtoseconds.

By delivering large quantities of photons to the sample quickly, the researchers were able to generate a sufficiently strong time-resolved scattering signal, thus visualizing the motion of atoms in 2D materials.

"Surface X-ray scattering is challenging enough on its own," said Argonne X-ray physicist Hua Zhou, an author of the study. "Extending it to do ultrafast science in single-layer materials represents a major technological advance that can show us a great deal about how atoms behave at surfaces and at the interfaces between materials."

In two-dimensional materials, atoms typically vibrate slightly along all three dimensions under static conditions. However, on ultrafast time scales, a different picture of atomic behavior emerges, said Argonne physicist and study author Haidan Wen.

Using ultrafast surface X-ray scattering, Wen and postdoctoral researcher I-Cheng Tung led an investigation of a two-dimensional material called tungsten diselenide (WSe2). In this material, each tungsten atom connects to two selenium atoms in a "V" shape. When the single-layer material is hit with an optical laser pulse, the energy from the laser causes the atoms to move within the plane of the material, creating a counterintuitive effect.

"You normally would expect the atoms to move out of the plane, since that's where the available space is," Wen said. "But here we see them mostly vibrate within the plane right after excitation."

These observations were supported by first-principle calculations led by Aiichiro Nakano at University of Southern California and scientist Pierre Darancet of Argonne's Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility. 

The team obtained preliminary surface X-ray scattering measurements at Argonne's Advanced Photon Source (APS), also a DOE Office of Science User Facility. These measurements, although they were not taken at ultrafast speeds, allowed the researchers to calibrate their approach for the LCLS free-electron laser, Wen said.

The direction of atomic shifts and the ways in which the lattice changes have important effects on the properties of two-dimensional materials like WSe2, according to University of Washington professor Xiaodong Xu. "Because these 2-D materials have rich physical properties, scientists are interested in using them to explore fundamental phenomena as well as potential applications in electronics and photonics," he said. "Visualizing the motion of atoms in single atomic crystals is a true breakthrough and will allow us to understand and tailor material properties for energy relevant technologies."

"This study gives us a new way to probe structural distortions in 2-D materials as they evolve, and to understand how they are related to unique properties of these materials that we hope to harness for electronic devices that use, emit or control light," added Aaron Lindenberg, a professor at SLAC and Stanford University and collaborator on the study. "These approaches are also applicable to a broad class of other interesting and poorly understood phenomena that occur at the interfaces between materials."

A paper based on the study, "Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface X-ray scattering," appeared in the March 11 online edition of Nature Photonics.

Other authors on the study included researchers from the University of Washington, University of Southern California, Stanford University, SLAC and Kumamoto University (Japan). The APSCNM, and LCLS are DOE Office of Science User Facilities.

The research was funded by the DOE's Office of Science.

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Chris Kramer
ckramer@anl.gov
630-252-5580

 @argonne

http://www.anl.gov 

Chris Kramer | EurekAlert!
Further information:
https://www.anl.gov/article/ultrathin-and-ultrafast-scientists-pioneer-new-technique-for-twodimensional-material-analysis
http://dx.doi.org/10.1038/s41566-019-0387-5

More articles from Materials Sciences:

nachricht Thermophones offer new route to radically simplify array design, research shows
03.07.2020 | University of Exeter

nachricht The lightest electromagnetic shielding material in the world
02.07.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>