Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis

12.03.2019

Discovery allows scientists to look at how 2D materials move with ultrafast precision.

Using a never-before-seen technique, scientists have found a new way to use some of the world's most powerful X-rays to uncover how atoms move in a single atomic sheet at ultrafast speeds.


This image shows the experimental setup for a newly developed technique: ultrafast surface X-ray scattering. This technique couples an optical pump with an X-ray free-electron laser probe to investigate molecular dynamics on the femtosecond time scale.

Image by Haidan Wen

The study, led by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and in collaboration with other institutions, including the University of Washington and DOE's SLAC National Accelerator Laboratory, developed a new technique called ultrafast surface X-ray scattering.

This technique revealed the changing structure of an atomically thin two-dimensional crystal after it was excited with an optical laser pulse.

"Extending [surface X-ray scattering] to do ultrafast science in single-layer materials represents a major technological advance that can show us a great deal about how atoms behave at surfaces and at the interfaces between materials." -- Argonne scientist Haidan Wen

Unlike previous surface X-ray scattering techniques, this new method goes beyond providing a static picture of the atoms on a material's surface to capture the motions of atoms on timescales as short as trillionths of a second after laser excitation.

Static surface X-ray scattering and some time-dependent surface X-ray scattering can be performed at a synchrotron X-ray source, but to do ultrafast surface X-ray scattering the researchers needed to use the Linac Coherent Light Source (LCLS) X-ray free-electron laser at SLAC. This light source provides very bright X-rays with extremely short exposures of 50 femtoseconds.

By delivering large quantities of photons to the sample quickly, the researchers were able to generate a sufficiently strong time-resolved scattering signal, thus visualizing the motion of atoms in 2D materials.

"Surface X-ray scattering is challenging enough on its own," said Argonne X-ray physicist Hua Zhou, an author of the study. "Extending it to do ultrafast science in single-layer materials represents a major technological advance that can show us a great deal about how atoms behave at surfaces and at the interfaces between materials."

In two-dimensional materials, atoms typically vibrate slightly along all three dimensions under static conditions. However, on ultrafast time scales, a different picture of atomic behavior emerges, said Argonne physicist and study author Haidan Wen.

Using ultrafast surface X-ray scattering, Wen and postdoctoral researcher I-Cheng Tung led an investigation of a two-dimensional material called tungsten diselenide (WSe2). In this material, each tungsten atom connects to two selenium atoms in a "V" shape. When the single-layer material is hit with an optical laser pulse, the energy from the laser causes the atoms to move within the plane of the material, creating a counterintuitive effect.

"You normally would expect the atoms to move out of the plane, since that's where the available space is," Wen said. "But here we see them mostly vibrate within the plane right after excitation."

These observations were supported by first-principle calculations led by Aiichiro Nakano at University of Southern California and scientist Pierre Darancet of Argonne's Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility. 

The team obtained preliminary surface X-ray scattering measurements at Argonne's Advanced Photon Source (APS), also a DOE Office of Science User Facility. These measurements, although they were not taken at ultrafast speeds, allowed the researchers to calibrate their approach for the LCLS free-electron laser, Wen said.

The direction of atomic shifts and the ways in which the lattice changes have important effects on the properties of two-dimensional materials like WSe2, according to University of Washington professor Xiaodong Xu. "Because these 2-D materials have rich physical properties, scientists are interested in using them to explore fundamental phenomena as well as potential applications in electronics and photonics," he said. "Visualizing the motion of atoms in single atomic crystals is a true breakthrough and will allow us to understand and tailor material properties for energy relevant technologies."

"This study gives us a new way to probe structural distortions in 2-D materials as they evolve, and to understand how they are related to unique properties of these materials that we hope to harness for electronic devices that use, emit or control light," added Aaron Lindenberg, a professor at SLAC and Stanford University and collaborator on the study. "These approaches are also applicable to a broad class of other interesting and poorly understood phenomena that occur at the interfaces between materials."

A paper based on the study, "Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface X-ray scattering," appeared in the March 11 online edition of Nature Photonics.

Other authors on the study included researchers from the University of Washington, University of Southern California, Stanford University, SLAC and Kumamoto University (Japan). The APSCNM, and LCLS are DOE Office of Science User Facilities.

The research was funded by the DOE's Office of Science.

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Chris Kramer
ckramer@anl.gov
630-252-5580

 @argonne

http://www.anl.gov 

Chris Kramer | EurekAlert!
Further information:
https://www.anl.gov/article/ultrathin-and-ultrafast-scientists-pioneer-new-technique-for-twodimensional-material-analysis
http://dx.doi.org/10.1038/s41566-019-0387-5

More articles from Materials Sciences:

nachricht High-efficiency thermoelectric materials: New insights into tin selenide
25.04.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Scientists develop low-cost energy-efficient materials
24.04.2019 | National University of Science and Technology MISIS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>