Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasensitive sensors made from boron-doped graphene

03.11.2015

Ultrasensitive gas sensors based on the infusion of boron atoms into graphene -- a tightly bound matrix of carbon atoms -- may soon be possible, according to an international team of researchers from six countries.

Graphene is known for its remarkable strength and ability to transport electrons at high speed, but it is also a highly sensitive gas sensor. With the addition of boron atoms, the boron graphene sensors were able to detect noxious gas molecules at extremely low concentrations, parts per billion in the case of nitrogen oxides and parts per million for ammonia, the two gases tested to date.


This is a drawing of boron doped graphine.

Credit: Torones, Penn State

This translates to a 27 times greater sensitivity to nitrogen oxides and 10,000 times greater sensitivity to ammonia compared to pristine graphene. The researchers believe these results, reported today (Nov. 2) in the Proceedings of the National Academy of Sciences, will open a path to high-performance sensors that can detect trace amounts of many other molecules.

"This is a project that we have been pursuing for the past four years, " said Mauricio Terrones, professor of physics, chemistry and materials science at Penn State. "We were previously able to dope graphene with atoms of nitrogen, but boron proved to be much more difficult. Once we were able to synthesize what we believed to be boron graphene, we collaborated with experts in the United States and around the world to confirm our research and test the properties of our material."

Both boron and nitrogen lie next to carbon on the periodic table, making their substitution feasible. But boron compounds are very air sensitive and decompose rapidly when exposed to the atmosphere. One-centimeter-square sheets were synthesized at Penn State in a one-of-a-kind bubbler-assisted chemical vapor deposition system. The result was large-area, high-quality boron-doped graphene sheets.

Once fabricated, the researchers sent boron graphene samples to researchers at the Honda Research Institute USA Inc., Columbus, Ohio, who tested the samples against their own highly sensitive gas sensors. Konstantin Novoselov's lab at the University of Manchester, UK, studied the transport mechanism of the sensors. Novoselov was the 2010 Nobel laureate in physics.

Theory collaborators in the U.S. and Belgium matched the scanning tunneling microscopy images to experimental images, confirmed the presence of the boron atoms in the graphene lattice and their effect when interacting with ammonia or nitrogen oxide molecules. Collaborators in Japan and China also contributed to the research.

"This multidisciplinary research paves a new avenue for further exploration of ultrasensitive gas sensors," said Avetik Harutyunyan, chief scientist and project leader at Honda Research Institute USA Inc. "Our approach combines novel nanomaterials with continuous ultraviolet light radiation in the sensor design that have been developed in our laboratory by lead researcher Dr. Gugang Chen in the last five years. We believe that further development of this technology may break the parts per quadrillion level of detection limit, which is up to six orders of magnitude better sensitivity than current state-of-the-art sensors."

These sensors can be used for labs and industries that use ammonia, a highly corrosive health hazard, or to detect nitrogen oxides, a dangerous atmospheric pollutant emitted from automobile tailpipes. In addition to detecting toxic or flammable gases, theoretical work indicates that boron-doped graphene could lead to improved lithium-ion batteries and field-effect transistors, the authors report.

###

The lead authors of the PNAS paper are Ruitao Lv, a former Penn State postdoctoral scholar in physics now at Tsinghua University, Beijing; Gugang Chen; Andrés Botello-Méndez, Catholic University of Louvain la-Neuve; and Amber McCreary, a graduate student in physics.

The National Natural Science Foundation of China; Multidisciplinary University Research awards from the U.S. Air Force Office of Scientific Research; Honda Research Institute USA Inc.; Europe's Graphene Flagship; Penn State's Center for Nanoscale Science, a National Science Foundation MRSEC, and Penn State's Materials Research Institute funded this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>