Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019

Physical chemistry: Publication in ACS Applied Materials & Interfaces

The group "Colloids and Nanooptics" of Prof. Dr. Matthias Karg at the Institute of Physical Chemistry has come up with a simple yet precise technique for developing highly ordered particle layers. The group is using tiny, soft and deformable spherical polymer beads with a hydrogel-like structure.


Ultra-thin layer of spherical hydrogel cores with gold particles transferred to a glass substrate.

Credit: HHU / Christoph Kawan


Producing the layer structure, (from left): First a solution containing the spherical hydrogel cores with the gold particles included is carefully applied to a water surface. This rapidly forms an ultra-thin, shimmering layer that can subsequently be lifted off using a glass substrate.

Credit: HHU / Christoph Kawan

Hydrogels are water swollen, three-dimensional networks. For example, we are familiar with these structures as super-absorbers in babies' nappies that have the ability to soak up large quantities of liquids.

Within these hydrogel beads are tiny gold or silver particles, just a few nanometres in size, that Karg's team synthesizes at HHU using metal salts in a reduction process.

"We can adjust the size of the gold particles very precisely, because the hydrogel shells are permeable to dissolved metal salts, allowing for successive overgrowth of the gold cores."

The structure of these core-shell particles can be roughly compared with that of a cherry, where a hard core is surrounded by soft pulp. However, the particles from the laboratory are roughly one hundred thousand times smaller.

The Duesseldorf-based researchers can then use a dilute solution of these hydrogel beads to produce thin monolayers. They apply the beads to a water surface, where a highly ordered and colourfully shimmering layer self-assembles. They transfer this layer from the water surface onto glass substrates. This transfer makes the entire glass substrate shimmer.

Looking at this layer with an electron microscope reveals a regular, hexagonally ordered particle array. "These are the gold particles in their shells," explains doctoral student Kirsten Volk, "and we see that they are arranged in a single, highly ordered layer."

It's the gold particles that determine the colour of the layer: They reflect visible light with certain wavelengths, which interferes and thus creates the impression of a different colour from different angles.

"These thin layers are very interesting for optoelectronics - i.e. the transfer and processing of data using light. It may also be possible to use them to build miniaturised lasers," explains Prof. Karg. These nanolasers are only nanometres in size, thus constituting a key technology in the field of nanophotonics.

In a study now published in the journal ACS Applied Materials & Interfaces, the Duesseldorf-based researchers have overcome a major obstacle on the path to such nanolasers. They succeeded in creating collective resonances in the gold particles by incident light.

This means that the gold particles are not excited individually; instead, all excited particles are in resonance. This collective resonance is the basic prerequisite for building lasers. The special aspect of the research findings published is that not only can the particle layers be created very easily and on a large scale, they are also especially thin.

For optoelectronic applications and nanolasers, the resonant modes will have to be amplified further in the thin layers. Prof. Karg: "Next we will try to amplify the resonance further by means of doping with emitters. In the long term, this could also allow us to realise electrically powered nanolasers."

###

Original publication

Kirsten Volk, Joseph P. S. Fitzgerald, and Matthias Karg, In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films, ACS Appl. Mater. Interfaces 2019 11 (17), 16096-16106

DOI: 10.1021/acsami.9b03197

Arne Claussen | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acsami.9b03197

More articles from Materials Sciences:

nachricht Turning up the heat to create new nanostructured metals
20.11.2019 | DOE/Brookhaven National Laboratory

nachricht Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes
20.11.2019 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>