Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Trash into Cash . . . and Saving Energy

04.03.2013
Suppose you could replace “Made in China” with “Made in my garage.” Suppose also that every time you polished off a jug of two percent, you would be stocking up on raw material to make anything from a cell phone case and golf tees to a toy castle and a garlic press.

And, you could give yourself a gold medal for being a bona fide, recycling, polar-bear-saving rock star.


Joshua Pearce's group cleans plastic milk jugs, removes the labels and shreds them into plastic before turning them into plastic filament for 3D printers.

Michigan Technological University’s Joshua Pearce is working on it. His main tool is open-source 3D printing, which he uses to save thousands of dollars by making everything from his lab equipment to his safety razor.

Using free software downloaded from sites like Thingiverse, which now holds over 54,000 open-source designs, 3D printers make all manner of objects by laying down thin layers of plastic in a specific pattern. While high-end printers can cost many thousands of dollars, simpler open-source units run between $250 and $500—and can be used to make parts for other 3D printers, driving the cost down ever further.

“One impediment to even more widespread use has been the cost of filament,” says Pearce, an associate professor of materials science and engineering and electrical and computer engineering. Though vastly less expensive than most manufactured products, the plastic filament that 3D printers transform into useful objects isn’t free.

Milk jugs, on the other hand, are a costly nuisance, either to recycle or to bury in a landfill. But if you could turn them into plastic filament, Pearce reasoned, you could solve the disposal problem and drive down the cost of 3D printing even more.

So Pearce and his research group decided to make their own recycling unit, or RecycleBot. They cut the labels off milk jugs, washed the plastic, and shredded it. Then they ran it through a homemade device that melts and extrudes it into a long, spaghetti-like string of plastic. Their process is open-source and free for everyone to make and use at Thingiverse.com.

The process isn’t perfect. Milk jugs are made of high-density polyethylene, or HDPE, which is not ideal for 3D printing. “HDPE is a little more challenging to print with,” Pearce says. But the disadvantages are not overwhelming. His group made its own climate-controlled chamber using a dorm-room refrigerator and an off-the-shelf teddy-bear humidifier and had good results. With more experimentation, the results would be even better, he says. “3D printing is where computers were in the 1970s.”

The group determined that making their own filament in an insulated RecycleBot used about 1/10th the energy needed to acquire commercial 3D filament. They also calculated that they used less energy than it would take to recycle milk jugs conventionally.

RecycleBots and 3D printers have all kinds of applications, but they would be especially useful in areas where shopping malls are few and far between, Pearce believes. “Three billion people live in rural areas that have lots of plastic junk,” he says. “They could use it to make useful consumer goods for themselves. Or imagine people living by a landfill in Brazil, recycling plastic and making useful products or even just ‘fair trade filament’ to sell. Twenty milk jugs gets you about 1 kilogram of plastic filament, which currently costs $30 to $50 online.”

Pearce’s research is described in depth in two articles: “Distributed Recycling of Waste Polymer into RepRap Feedstock,”coauthored with Christian Baechler and Matthew DeVuono of Queen’s University and published in the March issue of Rapid Prototyping ; and “Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas,” coauthored by Michigan Tech’s Jerry Anzalone (CEE) and students Megan Kreiger (MSE), Meredith Mulder (MSE) and Alexandra Glover (MSE), which will appear in the Proceedings of the Materials Research Society.

Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

Marcia Goodrich | EurekAlert!
Further information:
http://www.mtu.edu

More articles from Materials Sciences:

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht UNH Researchers find seed coats could lead to strong, tough, yet flexible materials
08.08.2018 | University of New Hampshire

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>