Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning a porous material's color on and off with acid

12.02.2019

A research team led by Hokkaido University in Japan have constructed a porous material that is very stable and changes color when exposed to acid vapor. This is believed to be the first reported instance of a hydrogen-bonded organic framework changing color in response to acid. The findings are described in the Journal of the American Chemical Society.

Chemists are working to develop porous materials made from organic molecules that have structures with well-defined openings that can separate and store gasses. Such materials can also be used in electronic devices and sensors.


Image of the created hydrogen-bonding organic framework CPHATN-(TCB) (left), and its activated version, CPHATN-1a (right).

Photo credit: Hisaki I. et al., Acid Responsive Hydrogen-Bonded Organic Frameworks, Journal of the American Chemical Society, January 7, 2019.)

In particular, researchers are investigating how to make materials using molecules bonded together by hydrogen bonds, known as hydrogen-bonding organic frameworks (HOFs). HOFs are high-crystalline, flexible, and regenerable, which make them attractive candidates. But they can also be fragile and crumble apart.

Ichiro Hisaki, a chemist at Hokkaido University's Research Institute for Electronic Science, along with Anderrazzak Douhal, a photophysicist at University of Castilla La Mancha, Spain and their colleagues developed a hexagon-shaped framework, called CPHATN-1a, and found a surprising attribute - it changes color from yellow to reddish-brown when exposed to acid solution or acid vapor.

When the acid solution or vapor is removed, either through heating or ambient evaporation, the HOF reverted back to its original yellow color.

The researchers determined that the color change is caused by protons adding onto nitrogen atoms within the compound, which shifts the spectrum of light absorbed.

Additional tests revealed that CPHATN-1a is extremely stable, maintaining its porous structure at temperatures to at least 633 Kelvin (359 C).

The robust material also stood up to heated, common organic solvents, including chloroform, ethanol and water, retaining its structure rather than dissolving or breaking apart.

"The present results would open a door to develop new porous materials with stimuli responsiveness," the researchers note. "These could be used in the creation of new sensors or towards the visualization of minute chemical reactions."

Media Contact

Tyler Tannert
011-706-2186

 @hokkaidouni

https://www.global.hokudai.ac.jp/ 

Tyler Tannert | EurekAlert!
Further information:
https://www.global.hokudai.ac.jp/blog/turning-a-porous-materials-color-on-and-off-with-acid/
http://dx.doi.org/10.1021/jacs.8b12124

More articles from Materials Sciences:

nachricht A remote control for neurons
04.06.2020 | College of Engineering, Carnegie Mellon University

nachricht Smart textiles made possible by flexible transmission lines
03.06.2020 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>