Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Bergakademie Freiberg develops unique material from marine bath sponge skeleton

07.10.2019

Scientists of the TU Bergakademie Freiberg, together with an international research team, have deciphered the structure of a marine sponge skeleton and developed a novel three-dimensional composite material for the modern materials industry.

The so-called "graphite" has unique structural, mechanical and thermal properties and could serve as a centimetre-thin catalyst for industry in the future. The model for the new material is the carbonized 3D skeleton of a marine bath sponge. This consists of collagen-containing spongin and is particularly stable and heat-resistant due to its multi-layer nanofibers.


Der neuartige Kohlenstoffschwamm.

Foto: TU Bergakademie Freiberg

In various experiments, scientists led by Prof. Hermann Ehrlich of the Technical University Bergakademie Freiberg have carbonized the spongin scaffolds at temperatures of up to 1200 degrees Celsius.

The resulting carbon sponge resembles the shape and unique microarchitecture of the original spongin scaffold and is so stable that it can be cut into any shape with a metal saw. Coated with a metal layer, it also becomes a unique hybrid material with excellent catalytic performance.

"We have found a new way to use familiar bath sponges. Instead of using them only for cosmetics, we can now also use them for modern technologies," says Prof. Ehrlich happily. Together with his team, he is working on initial proposals for the production of the biomimetically inspired catalyst for industry.

For the past two years, the 29-member team has been researching the structure of the naschwachsenden marine sponges, developed by nature and in existence for 600 million years, in order to develop biomimetic models as alternatives to plastic frameworks for modern materials science. They are supported by the German Research Foundation (DFG) and the State Ministry of Science and the Arts.

The research work was published before October 4 in the renowned journal "Science Advances": https://advances.sciencemag.org/content/5/10/eaax2805.full.

Extreme Biomimetics is a new scientific special field at the TU Bergakademie Freiberg. It deals with the investigation of natural and artificial phenomena for the development of novel bioinspired 3D composites. The scientists use renewable, naturally occurring and non-toxic organic scaffolds on a centimetre to metre scale.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Hermann Ehrlich, Phone: +49 3731 39 2867

Originalpublikation:

https://advances.sciencemag.org/content/5/10/eaax2805.full

Weitere Informationen:

https://tu-freiberg.de/esm/institut/institutsleitung/biomineralogie-und-extreme-...

Luisa Rischer | idw - Informationsdienst Wissenschaft

Further reports about: 3D catalytic performance graphite marine sponges

More articles from Materials Sciences:

nachricht Theoretical tubulanes inspire ultrahard polymers
14.11.2019 | Rice University

nachricht New spin directions in pyrite an encouraging sign for future spintronics
14.11.2019 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>