Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transparent, conductive films promising for developing flexible screens

07.06.2018

Researchers demonstrate silver-based electrode films that could be used for flexible touch displays, televisions and solar cells

Researchers have demonstrated large-scale fabrication of a new type of transparent conductive electrode film based on nanopatterned silver. Smartphone touch screens and flat panel televisions use transparent electrodes to detect touch and to quickly switch the color of each pixel.


The researchers used an approach called colloidal lithography to create a silver nanopattern that conducts electricity while letting light through the holes. The new transparent electrode films could be useful for solar cells as well as flexible displays and touch screens.

Credit: Jes Linnet, University of Southern Denmark

Because silver is less brittle and more chemically resistant than materials currently used to make these electrodes, the new films could offer a high-performance and long-lasting option for use with flexible screens and electronics. The silver-based films could also enable flexible solar cells for installation on windows, roofs and even personal devices.

In the journal Optical Materials Express, the researchers report fabrication of a transparent conducting thin-film on glass discs 10 centimeters in diameter. Based on theoretical estimations that matched closely with experimental measurements, they calculate that the thin-film electrodes could perform significantly better than those used for existing flexible displays and touch screens.

"The approach we used for fabrication is highly reproducible and creates a chemically stable configuration with a tunable tradeoff between transparency and conductive properties," said the paper's first author, Jes Linnet from the University of Southern Denmark. "This means that if a device needs higher transparency but less conductivity, the film can be made to accommodate by changing the thickness of the film."

Finding a flexible alternative

Most of today's transparent electrodes are made of indium tin oxide (ITO), which can exhibit up to 92 percent transparency -- comparable to glass. Although highly transparent, ITO thin films must be processed carefully to achieve reproducible performance and are too brittle to use with flexible electronics or displays. Researchers are seeking alternatives to ITO because of these drawbacks.

The anti-corrosive nature of noble metals such as gold, silver and platinum makes them promising ITO alternatives for creating long-lasting, chemically resistant electrodes that could be used with flexible substrates. However, until now, noble metal transparent conductive films have suffered from high surface roughness, which can degrade performance because the interface between the film and other layers isn't flat. Transparent conductive films can also be made using carbon nanotubes, but these films don't currently exhibit high enough conductance for all applications and tend to also suffer from surface roughness due to the nanotubes stacking on top of each other.

In the new study, the researchers used an approach called colloidal lithography to create transparent conductive silver thin films. They first created a masking layer, or template, by coating a 10-centimeter wafer with a single layer of evenly sized, close-packed plastic nanoparticles. The researchers placed these coated wafers into a plasma oven to shrink the size of all the particles evenly. When they deposited a thin film of silver onto the masking layer, the silver entered the spaces between the particles. They then dissolved the particles, leaving a precise pattern of honeycomb-like holes that allow light to pass through, producing an electrically conductive and optically transparent film.

Balancing transparency and conductivity

The researchers demonstrated that their large-scale fabrication method can be used to create silver transparent electrodes with as much as 80 percent transmittance while keeping electrical sheet resistance below 10 ohms per square - about a tenth of what has been reported for carbon-nanotube-based films with the equivalent transparency. The lower the electrical resistance, the better the electrodes are at conducting an electrical charge.

"The most novel aspect of our work is that we accounted for both the transmission properties and the conductance properties of this thin film using theoretical analysis that correlated well with measured results," said Linnet. "Fabrication problems typically make it hard to get the best theoretical performance from a new material. We decided to report what we encountered experimentally and postulate remedies so that this information could be used in the future to avoid or minimize problems that may affect performance."

The researchers say that their findings show that colloidal lithography can be used to fabricate transparent conductive thin films that are chemically stable and could be useful for a variety of applications.

###

Paper: J. Linnet, A. R. Walther, C. Wolff, O. Albreksten, N. A. Mortensen, J. Kjelstrup-Hansen. "Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films," Opt. Mater. Express Volume 8 Issue 7, pp. 1733-1746 (2018). DOI:https://doi.org/10.1364/OME.8.001733.

About Optical Materials Express

Optical Materials Express (OMEx) is an open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The editor-in-chief for OMEx is Alexandra Boltasseva from Purdue University. For more information, visit: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen Azalea Coste
The Optical Society The Optical Society
randersen@osa.org acoste@osa.org

http://www.osa.org 

Rebecca Andersen | EurekAlert!

Further reports about: ITO OSA electrodes glass surface roughness thin film touch screens

More articles from Materials Sciences:

nachricht 3D inks that can be erased selectively
16.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Designing Nanocrystals for more efficient Optoelectronics
16.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>