Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theoretical tubulanes inspire ultrahard polymers

14.11.2019

Rice University-printed sample is full of holes, but stops bullets better than solid materials

A lightweight material full of holes is nearly as hard as diamond. The mere dents left by speeding bullets prove it.


Materials made at Rice University based on theoretical tubulane structures were better able to handle the impact of a bullet than the polymer reference cube at bottom. The bullet stopped in approximately the second layer of the tubulane structures, with no significant structural damage observed beyond that layer. Bullets fired at the same speed sent cracks through the entire reference cube.

Credit: Jeff Fitlow/Rice University

Researchers at Rice University's Brown School of Engineering and their colleagues are testing polymers based on tubulanes, theoretical structures of crosslinked carbon nanotubes predicted to have extraordinary strength.

The Rice lab of materials scientist Pulickel Ajayan found tubulanes can be mimicked as scaled-up, 3D-printed polymer blocks that prove to be better at deflecting projectiles than the same material without holes. The blocks are also highly compressible without breaking apart.

As detailed in Small, the discovery could lead to printed structures of any size with tunable mechanical properties.

Tubulanes were predicted in 1993 by chemist Ray Baughman of the University of Texas at Dallas and physicist Douglas Galvão of the State University of Campinas, Brazil, both co-principal investigators on the new paper. Tubulanes themselves have yet to be made, but their polymer cousins may be the next best thing.

Rice graduate student and lead author Seyed Mohammad Sajadi and his colleagues built computer simulations of various tubulane blocks, printed the designs as macroscale polymers and subjected them to crushing forces and speeding bullets. The best proved 10 times better at stopping a bullet than a solid block of the same material.

The Rice team fired projectiles into patterned and solid cubes at 5.8 kilometers per second. Sajadi said the results were impressive. "The bullet was stuck in the second layer of the structure," he said. "But in the solid block, cracks propagated through the whole structure."

Tests in a lab press showed how the porous polymer lattice lets tubulane blocks collapse in upon themselves without cracking, Sajadi said.

The Ajayan group made similar structures two years ago when it converted theoretical models of schwarzites into 3D-printed blocks. But the new work is a step toward what materials scientists consider a holy grail, Sajadi said.

"There are plenty of theoretical systems people cannot synthesize," he said. "They've remained impractical and elusive. But with 3D printing, we can still take advantage of the predicted mechanical properties because they're the result of the topology, not the size."

Sajadi said tubulane-like structures of metal, ceramic and polymer are only limited by the size of the printer. Optimizing the lattice design could lead to better materials for civil, aerospace, automotive, sports, packaging and biomedical applications, he said.

"The unique properties of such structures comes from their complex topology, which is scale-independent," said Rice alumnus Chandra Sekhar Tiwary, co-principal investigator on the project and now an assistant professor at the Indian Institute of Technology, Kharagpur. "Topology-controlled strengthening or improving load-bearing capability can be useful for other structural designs as well."

According to co-authors Peter Boul and Carl Thaemlitz of Aramco Services Co., a sponsor of the research, potential applications span many industries, but oil and gas will find tubulane structures particularly valuable as tough and durable materials for well construction. Such materials must withstand impacts, particularly in hydraulic fracturing, that can rubblize standard cements.

"The impact resistance of these 3D-printed structures puts them in a class of their own," Boul said.

###

Co-authors are graduate student Prathyush Ramesh and research scientist Muhammad Rahman of Rice; Rice alumnus Cristiano Woellner, an assistant professor at the Federal University of Parana, Brazil; and Rice alumnus Shannon Eichmann and Qiushi Sun of the Aramco Research Center, Houston. Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Brazilian National Council for Scientific and Technological Development and the São Paulo Research Foundation also supported the research.

Read the abstract at https://onlinelibrary.wiley.com/doi/10.1002/smll.201904747.

This news release can be found online at https://news.rice.edu/2019/11/13/theoretical-tubulanes-inspire-ultrahard-polymers/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Math gets real in strong, lightweight structures: http://news.rice.edu/2017/11/16/math-gets-real-in-strong-lightweight-structures-2/

Ajayan Research Group: https://ajayan.rice.edu

Department of Materials Science and NanoEngineering: https://msne.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Video:

https://youtu.be/F8ANx7z4ahw

A compression test showed that tubulane-based materials developed at Rice University handled pressure well, collapsing without cracking. (Courtesy of the Ajayan Research Group/Rice University)

Images for download:

https://news-network.rice.edu/news/files/2019/10/1111_IMPACT-1-WEB.jpg

Tubulane-like polymer structures created at Rice University were better able to handle the impact of a bullet than the polymer reference cube at bottom right. The bullet stopped in approximately the second layer of the tubulane structures, with no significant structural damage observed beyond that layer. Bullets fired at the same speed sent cracks through the entire reference cube. (Credit: Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2019/10/1111_IMPACT-2-WEB-3.jpg

Materials made at Rice University based on theoretical tubulane structures were better able to handle the impact of a bullet than the polymer reference cube at bottom. The bullet stopped in approximately the second layer of the tubulane structures, with no significant structural damage observed beyond that layer. Bullets fired at the same speed sent cracks through the entire reference cube. (Credit: Jeff Fitlow/Rice University)

https://news-network.rice.edu/news/files/2019/10/1111_IMPACT-3-WEB.jpg

Rice University graduate student Seyed Mohammad Sajadi and his colleagues built computer simulations of tubulane blocks, printed the designs as macroscale polymers and subjected them to crushing forces and speeding bullets. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Jeff Falk
713-348-6775
jfalk@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

http://news.rice.edu 

Mike Williams | EurekAlert!
Further information:
https://news.rice.edu/2019/11/13/theoretical-tubulanes-inspire-ultrahard-polymers/
http://dx.doi.org/10.1002/smll.201904747

More articles from Materials Sciences:

nachricht Tiny quantum sensors watch materials transform under pressure
13.12.2019 | DOE/Lawrence Berkeley National Laboratory

nachricht Light, strong, and tough: Researchers at the University of Bayreuth discover unique polymer fibres
13.12.2019 | Universität Bayreuth

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>