Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Slipperiness of Ice Explained

09.05.2018

Everybody knows that sliding on ice or snow, is much easier than sliding on most other surfaces. But why is the ice surface slippery? This question has engaged scientists for more than a century and continues to be subject of debate. Researchers from AMOLF, the University of Amsterdam and the Max Planck Institute for Polymer Research (MPI-P) in Mainz, have now shown that the slipperiness of ice is a consequence of the ease with which the topmost water molecules can roll over the ice surface.

Winter sports such as skiing, speed skating, figure skating, and curling require the slippery surfaces of ice and snow. While the fact that the ice surface is slippery is widely acknowledged, it is far from being completely understood.


In the experiments, a steel ball slides over the ice surface which consists of rapidly tumbling mobile water molecules that are only loosely bounded to the underlying ice.

© Nagata/MPI-P

In 1886 John Joly, an Irish physicist, offered the first scientific explanation for low friction on ice; when an object - i.e. an ice skate - touches the ice surface the local contact pressure is so high that the ice melts thereby creating a liquid water layer that lubricates the sliding.

The current consensus is that although liquid water at the ice surface does reduce sliding friction on ice, this liquid water is not melted by pressure but by frictional heat produced during sliding.

A team of researchers led by brothers Prof. Daniel Bonn from the University of Amsterdam and Prof. Mischa Bonn from MPI-P, have now demonstrated that friction on ice is more complex than so far assumed.

Through macroscopic friction experiments at temperatures ranging from 0 °C to -100 °C the researchers show that - surprisingly - the ice surface transforms from an extremely slippery surface at typical winter sports temperatures, to a surface with high friction at -100 °C.

To investigate the origin of this temperature-dependent slipperiness, the researchers performed spectroscopic measurements of the state of water molecules at the surface, and compared these with molecular dynamics (MD) simulations.

This combination of experiment and theory reveals that two types of water molecules exist at the ice surface: water molecules that are stuck to the underlying ice (bound by three hydrogen bonds) and mobile water molecules that are bound by only two hydrogen bonds. These mobile water molecules continuously roll over the ice - like tiny spheres - powered by thermal vibrations.

As the temperature increases, the two species of surface molecules are interconverted: the number of mobile water molecules is increased at the expense of water molecules that are fixed to the ice surface. Remarkably, this temperature driven change in the mobility of the topmost water molecules at the ice surface perfectly matches the temperature-dependence of the measured friction force: the larger the mobility at the surface, the lower the friction and vice versa.

The researchers therefore conclude that - rather than a thin layer of liquid water on the ice - the high mobility of the surface water molecules is responsible for the slipperiness of ice.

Although the surface mobility continues to increase all the way up to 0 °C, this is not the ideal temperature for sliding on ice. The experiments show that the friction is in fact minimal at -7 °C; the exact same temperature is imposed at speed skating rinks.

The researchers show that at temperatures between -7 °C and 0 °C, sliding is more difficult because the ice becomes softer, causing the sliding object to dig deeper into the ice.

The results are published in the Journal of Physical Chemistry Letters.

Contact:
Prof. Daniel Bonn
Postbus 94485
1090 GL Amsterdam
eMail: d.bonn@uva.nl
phone: +31 (0)205255887

Prof. Mischa Bonn
Max Planck Institute for Polymer Research
Ackermannweg 10
D-55128 Mainz
eMail: bonn@mpip-mainz.mpg.de
phone: +49 (0)6131 379 161

Link to publication:
https://pubs.acs.org/doi/10.1021/acs.jpclett.8b01188

Link to Max Planck Institute for Polymer Research:
https://www.mpip-mainz.mpg.de/5334049/PM2018-12

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>