Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for dark matter widens

21.03.2018

New scintillation material shows promise in search for light dark matter particles

Astronomers have observed that galaxies rotate with such great speed they should be torn apart, yet they are not. It is as if some hidden mass is holding the galaxies together by exerting a gravitational force on ordinary matter.


Left: Excitation curve (blue diamonds) and emission curve (red circles) showing that almost all of the emission spectrum of the GaAs scintillator is outside the absorption band. Right: Simplified diagram of excitation and emission processes. The silicon donor provides a population of conduction band electrons that recombine with holes trapped on the boron acceptors. Electron excitations as little as 1.44 eV can produce 1.33 eV photons.

Credit: Stephen Derenzo, Lawrence Berkeley National Laboratory

This unknown mass is known as dark matter. Ordinary matter makes up only 5 percent of all content in the universe, whereas dark matter constitutes more than 25 percent of everything. The remaining 70 percent is known as dark energy, but no one has ever directly observed dark matter or dark energy.

In this week's issue of Journal of Applied Physics, by AIP Publishing, investigators report the discovery of a new material that may be able to directly detect dark matter. The material, known as a scintillator, should be sensitive to dark matter that is lighter than a proton. This will allow the search for dark matter to enter a largely unexplored mass range, below that of the proton.

Dark matter particles heavier than protons are known as weakly interacting massive particles, or WIMPs. Researchers have tried to detect these in several ways, including in underground laboratories where a large amount of shielding can be used, but, so far, they have all failed. To date, nothing is actually known about dark matter's mass, and its detection would have huge implications for our understanding of the universe.

The scintillator material reported in this work operates near absolute zero, or nearly minus 460 degrees Fahrenheit. It detects electrons recoiling from collisions with dark matter particles and consists of a target of ordinary matter, in this case gallium arsenide, or GaAs, doped by a small amount of other elements. The target emits a photon (a particle of light) after an electron in the target is excited to a high energy state through a collision with a dark matter particle.

The discovery represents the first time that n-type GaAs, chosen for its low band gap energy, has been used as a cryogenic scintillation detector. When the new scintillation detector is combined with a cryogenic photodetector -- which can detect light at very low temperatures -- the result will be, in the words of Stephen Derenzo, lead author on this week's report, "a workhorse useful in the search for dark matter in a largely unexplored mass range."

When the final device is constructed, experiments will be carried out deep underground to shield the detector from cosmic rays and other potential sources of false signals. One serious limitation of most scintillators is afterglow, also known as phosphorescence. Afterglow is a potential problem since it can mimic a dark matter detection and lead to a false signal. Data in this week's report show that no afterglow occurs with the new scintillator material -- a very promising result in the ongoing search for dark matter.

###

The article, "Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter," is authored by S. Derenzo, E. Bourret, S. Hanrahan and G. Bizarri. The article will appear in the Journal of Applied Physics March 20, 2018 (DOI: 10.1063/1.5018343). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5018343.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See http://jap.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

More articles from Materials Sciences:

nachricht Printing complex cellulose-based objects
27.03.2020 | ETH Zurich

nachricht A key development in the drive for energy-efficient electronics
24.03.2020 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>