Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The scientists from MSU developed a basis for highly sensitive gas sensors

27.12.2017

A team from the Faculty of Physics of Lomonosov Moscow State University suggested using porous silicon nanowire arrays in highly sensitive gas sensors. These devices will be able to detect the presence of toxic and non-toxic gas molecules in the air at room temperature. The results of the study were published in Physica Status Solidi A: Applications and Materials Science journal.

Taking into account high levels of environmental pollution in the modern world, it is important to develop new sensitive devices able to identify molecules in gas phase accurately and selectively. This is true both for toxic and non-toxic gases.


Principle of the operation of the sensor based on porous silicon nanowire arrays.

Credit: Liubov Osminkina

However, the majority of modern gas sensors only work at high temperatures which limits the scope of their application. Therefore the development of reusable highly sensitive gas detectors working at room temperatures is an important area of modern physics development.

The scientists from MSU suggested using porous silicon nanowire arrays as sensitive elements of such detectors. They can be obtained by means of a cheap method of the metal-assisted chemical etching. It is based on selective chemical etching, i.e. partial removal of surface layer from a bulk crystalline silicon with the use of metal nanoparticles as a catalyst. Moreover, the procedure is quite quick: at least 100 elements can be produced in a lab within just one hour.

Each sensor consists of an array of 10 micron long organized silicon nanowires with diameters ranging from 100 to 200 nm. Each nanowire has porous crystalline structure. The size of silicon crystals and pores between them in individual nanowire, varies from three to five nanometers.

Authors have shown that such porous nanowires have huge specific surface area due to which their physical and chemical properties are extremely sensitive to molecular environment. It was also found out that the obtained samples exhibited an effective photoluminescence in the red spectrum region at room temperature.

"For the first time we've shown that photoluminescence of silicon nanowires is quenched in oxygen (O2) atmosphere but then restored to initial values in the atmosphere of a noble gas - nitrogen (N2). This is repeated in several adsorption-desorption cycles," said Liubov Osminkina, the head of the scientific group, PhD in physics and mathematics, and senior associate at the Faculty of Physics, MSU.

The scientists explained obtained experimental results with a microscopic model according to which the sensitivity of optical properties of the samples to their molecular environment is determined by reversible charging and discharging of Pb-centers - defects such as silicon dangling bonds on the surface of the nanowires. The authors of the study confirmed the model with measurements taken by using the electronic paramagnetic resonance method that helps determine existence and concentration of Pb-centers.

"What's important is that our sensors based on porous nanowires both work at home temperatures and also are reusable, because the all observed effects were completely reversible," added Liubov Osminkina.

The new sensors may be used both for effective control of environment pollution levels and for the monitoring of air composition in closed spaces, from classrooms to space stations.

###

The work was supported with a grant of Russian Scientific Foundation.

Media Contact

Yana Khlyustova
science-release@rector.msu.ru

http://www.msu.ru 

Yana Khlyustova | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>