Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of electronic devices: Strong and self-healing ion gels

12.10.2018

Scientists at Yokohama National University and the University of Tokyo in Japan have designed an ion gel with excellent toughness and an ability to self-heal at ambient temperature without any external trigger or detectable change in the environment such as light or temperature. This new class of material has promising potential for building flexible electronic devices.

Ion gels have attracted much attention due to their unique properties such as low tendency to evaporate at room temperature, high thermal stability and a high ionic conductivity. The researchers demonstrated an ion gel that quickly heals on its own without any external stimuli at room temperature. They also demonstrate the material's excellent toughness resulting from multiple hydrogen bonds within the material.


The ion gel exhibits fast self-healing ability at room temperature by reforming hydrogen bonds at the damaged surface. The fracture stress of the ion gel after healing 3 h is comparable to that of the pristine ion gel.

Credit: Yokohama National University

"Wearable electronic devices are expected to be stretched and bent many times during daily use," said Ryota Tamate, a corresponding author and a JSPS postdoctoral researcher at the Graduate School of Engineering, Yokohama National University. "If the ion gel used in the wearable device has a self-healing property, it may fix cracks and damages during the repeated stretching and bending, and improve the device's durability."

The study, published in Advanced Materials in July of 2018, describes a specific type of polymer gel, called the ion gel, that is filled with salts in liquid form, or ionic liquids. This ion gel was created by combining two materials, or "blocks" -- one is repelled by ionic liquids while the other bonds with hydrogen. Together, they form what is called a diblock copolymer.

The combination of the liquid salts and the diblock copolymer material resulted in a final micellar structure that is responsible for all of the material's desirable qualities. The block that is repelled by ionic liquids makes up the core, while the outside is composed of chains that interact with one another via multiple hydrogen bonds.

The study is the first demonstration that the introduction of hydrogen bonding into ion gels can result in the material's strength as well as its ability to self-heal at room temperature.

"The self-healing process of this ion gel can be completed as quickly as within a few hours," Tamate said.

"Hydrogen bonding is reversible, and as a result, it is a promising interaction that contributes to a material's ability to self-heal due to their reversible nature. In this study, by tuning the hydrogen bonding strength of polymer chains in ionic liquids, we utilized hydrogen bonding as a reversible cross-linking point of the ion gel. Furthermore, we proved that the micellar structure formed by the diblock copolymer material significantly improved the physical strength and self-standing ability of the ion gel," he added.

While several types of tough ion gels have been reported so far, the authors write that achieving both self-healing ability as well as high toughness remains a great challenge. They also report that their gel's mechanical and electrochemical properties were similar to those of an otherwise unaltered or unchanged ion gel. The material's self-standing ability, the fact that it can self-heal at room temperature as well as easily processed in solution all make it a promising solid electrolyte for future applications in the area of flexible electronics - in particular to create self-healing electronics.

According to Tamate, "For device applications, durability of the ion gel under various physically straining conditions should be quantitatively investigated. In addition, as the present diblock copolymer tends to absorb moisture from the air, we would like to seek other interactions between structures composed of several molecules that are stable in an open atmosphere for a long time. In addition, as physical properties of ionic liquids can be widely tuned by selection of cations and anions, the combination with different ionic liquids will be investigated."

Ultimately, the authors would like to develop new functional ion gels that can be used to create new devices that are flexible and thus wearable.

###

Yokohama National University (YNU or Yokokoku) is a Japanese national university founded in 1949. YNU provides students with a practical education utilizing the wide expertise of its faculty and facilitates engagement with the global community. YNU's strength in the academic research of practical application sciences leads to high-impact publications and contributes to international scientific research and the global society. For more information, please see: http://www.ynu.ac.jp/english/

Media Contact

Akiko Tsumura
kenkyu-kikaku@ynu.ac.jp
81-453-393-213

Akiko Tsumura | EurekAlert!
Further information:
http://dx.doi.org/10.1002/adma.201802792

More articles from Materials Sciences:

nachricht Machine learning methods provide new insights into organic-inorganic interfaces
04.08.2020 | Technische Universität Graz

nachricht Unusual electron sharing found in cool crystal
31.07.2020 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>