Taming defects in nanoporous materials to put them to a good use

Modification of defective nanoporous materials has unique effects on their properties. Swansea University scientists are seeking to master this method to make new materials to capture CO2. Credit: Swansea University

The word “defect” universally evokes some negative, undesirable feature, but researchers at the Energy Safety Research Institute (ESRI) at Swansea University have a different opinion: in the realm of nanoporous materials, defects can be put to a good use, if one knows how to tame them.

Metal Organic Frameworks

A team led by Dr Marco Taddei, Marie Sklodowska-Curie Actions Fellow at Swansea University, is investigating how the properties of metal-organic frameworks, a class of materials resembling microscopic sponges, can be adjusted by taking advantage of their defects to make them better at capturing CO2.

Dr Taddei said: “Metal-organic frameworks, or MOFs, are extremely interesting materials because they are full of empty space that can be used to trap and contain gases. In addition, their structure can be manipulated at the atomic level to make them selective to certain gases, in our case CO2.”

“MOFs containing the element zirconium are special, in the sense that they can withstand the loss of many linkages without collapsing. We see these defects as an attractive opportunity to play with the properties of the material.”

The researchers went on to investigate how defects take part in a process known as “post-synthetic exchange”, a two-step procedure whereby a MOF is initially synthesized and then modified through exchange of some components of its structure. They studied the phenomenon in real time using nuclear magnetic resonance, a common characterization technique in chemistry. This allowed them to understand the role of defects during the process.

The new study appears in the high impact international journal Angewandte Chemie.

“We found that defects are very reactive sites within the structure of the MOF, and that their modification affects the property of the material in a unique way.” said Dr Taddei “The fact that we did this by making extensive use of a technique that is easily accessible to any chemist around the globe is in my opinion one of the highlights of this work.”

ESRI Research

ESRI Director, Professor Andrew Barron is co-author of the work, said: “In ESRI, our research efforts are focused on making an impact on the way we produce energy, making it clean, safe and affordable. However, we are well aware that progress in applied research is only possible through a deep understanding of fundamentals. This work goes exactly in that direction.”

The study is a proof of concept, but these findings lay the foundation for future work, funded by the Engineering and Physical Sciences Research Council. The researchers want to learn how to chemically manipulate defective structures to develop new materials with enhanced performance for CO2 capture from steelworks waste gases, in collaboration with Tata Steel and University College Cork.

“Reducing the CO2 emissions derived from energy production and industrial processes is imperative to prevent serious consequences on climate,” states co-author Dr Enrico Andreoli, Senior Lecturer at Swansea University and leader of the CO2 capture and utilization group within ESRI, “Efforts in our group target the development of both new materials to efficiently capture CO2 and convenient processes to convert this CO2 into valuable products.”

###

Dr Taddei, Professor Barron and Dr Andreoli are the organizers of the 1st European Workshop on Metal Phosphonates Chemistry, which will be held in ESRI on the 19th of September, 2018.

Read the original publication “Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: beware of the defects!” by Taddei, Wakeham, Koutsianos, Andreoli, Barron.

ESRI

The Energy Safety Research Institute positioned to discover and implement new technology for a sustainable, affordable, and secure energy future and is housed on Swansea University's new world class Bay Campus. ESRI provides an exceptional environment for delivering cutting edge research across energy and energy safety-related disciplines with a focus on renewable energy, hydrogen, carbon capture and utilization, as well as new oil and gas technologies.

Media Contact

Delyth Purchase
d.purchase@swansea.ac.uk
01-792-513-022

 @swanseauni

http://www.swansea.ac.uk/ 

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors