Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming defects in nanoporous materials to put them to a good use

08.08.2018

Energy Safety Research Institute reveals fundamental aspects of defective materials that can be employed to capture CO2

The word "defect" universally evokes some negative, undesirable feature, but researchers at the Energy Safety Research Institute (ESRI) at Swansea University have a different opinion: in the realm of nanoporous materials, defects can be put to a good use, if one knows how to tame them.


Modification of defective nanoporous materials has unique effects on their properties. Swansea University scientists are seeking to master this method to make new materials to capture CO2.

Credit: Swansea University

Metal Organic Frameworks

A team led by Dr Marco Taddei, Marie Sklodowska-Curie Actions Fellow at Swansea University, is investigating how the properties of metal-organic frameworks, a class of materials resembling microscopic sponges, can be adjusted by taking advantage of their defects to make them better at capturing CO2.

Dr Taddei said: "Metal-organic frameworks, or MOFs, are extremely interesting materials because they are full of empty space that can be used to trap and contain gases. In addition, their structure can be manipulated at the atomic level to make them selective to certain gases, in our case CO2."

"MOFs containing the element zirconium are special, in the sense that they can withstand the loss of many linkages without collapsing. We see these defects as an attractive opportunity to play with the properties of the material."

The researchers went on to investigate how defects take part in a process known as "post-synthetic exchange", a two-step procedure whereby a MOF is initially synthesized and then modified through exchange of some components of its structure. They studied the phenomenon in real time using nuclear magnetic resonance, a common characterization technique in chemistry. This allowed them to understand the role of defects during the process.

The new study appears in the high impact international journal Angewandte Chemie.

"We found that defects are very reactive sites within the structure of the MOF, and that their modification affects the property of the material in a unique way." said Dr Taddei "The fact that we did this by making extensive use of a technique that is easily accessible to any chemist around the globe is in my opinion one of the highlights of this work."

ESRI Research

ESRI Director, Professor Andrew Barron is co-author of the work, said: "In ESRI, our research efforts are focused on making an impact on the way we produce energy, making it clean, safe and affordable. However, we are well aware that progress in applied research is only possible through a deep understanding of fundamentals. This work goes exactly in that direction."

The study is a proof of concept, but these findings lay the foundation for future work, funded by the Engineering and Physical Sciences Research Council. The researchers want to learn how to chemically manipulate defective structures to develop new materials with enhanced performance for CO2 capture from steelworks waste gases, in collaboration with Tata Steel and University College Cork.

"Reducing the CO2 emissions derived from energy production and industrial processes is imperative to prevent serious consequences on climate," states co-author Dr Enrico Andreoli, Senior Lecturer at Swansea University and leader of the CO2 capture and utilization group within ESRI, "Efforts in our group target the development of both new materials to efficiently capture CO2 and convenient processes to convert this CO2 into valuable products."

###

Dr Taddei, Professor Barron and Dr Andreoli are the organizers of the 1st European Workshop on Metal Phosphonates Chemistry, which will be held in ESRI on the 19th of September, 2018.

Read the original publication "Post-synthetic ligand exchange in zirconium-based metal-organic frameworks: beware of the defects!" by Taddei, Wakeham, Koutsianos, Andreoli, Barron.

ESRI

The Energy Safety Research Institute positioned to discover and implement new technology for a sustainable, affordable, and secure energy future and is housed on Swansea University's new world class Bay Campus. ESRI provides an exceptional environment for delivering cutting edge research across energy and energy safety-related disciplines with a focus on renewable energy, hydrogen, carbon capture and utilization, as well as new oil and gas technologies.

Media Contact

Delyth Purchase
d.purchase@swansea.ac.uk
01-792-513-022

 @swanseauni

http://www.swansea.ac.uk/ 

Media Contact | EurekAlert!
Further information:
http://www.swansea.ac.uk/press-office/latest-research/tamingdefectsinnanoporousmaterialstoputthemtoagooduse.php
http://dx.doi.org/10.1002/anie.201806910

More articles from Materials Sciences:

nachricht Bio-circuitry mimics synapses and neurons in a step toward sensory computing
18.10.2019 | DOE/Oak Ridge National Laboratory

nachricht Chains of atoms move at lightning speed inside metals
17.10.2019 | Linköping University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>