New Synthesis Approach Could Create More Durable and Elastic Materials

In the not-so-distant future, plastics could be more durable and rubbers could be more … well … rubbery thanks to a novel new approach to polymer synthesis discovered by Texas Tech University organic chemists.

In research slated for publication in the Journal of the American Chemical Society, the scientists demonstrated what principal investigator Michael Mayer refers to as an “elegant and simple” process for ultimately creating a slip-linked pulley system of molecules that could be used to create tougher and more elastic synthetic materials.

“No one has ever reported making polymers in this way,” said Mayer, an assistant professor of organic chemistry in the Department of Chemistry and Biochemistry. “It is a fundamentally new, stripped-back approach to the synthesis of this class of polymeric materials.”

Mayer’s findings provide a new way to form unusually complex polymers –compounds such as rubber formed from clusters of atoms that are chemically chained together.

Current methods for creating polymer networks rely on chemical reactions to cross-link the large molecules. However, when the resulting materials come under stress, Mayer said, the cross-links, which are often times the weakest links, can break resulting in failure of the material.

Mayer and his team, led by senior graduate student Songsu Kang, tried a different approach, beginning with molecules in the form of two interlocked rings – much like the rings used by magicians in the so-called “magic ring” trick.

Their resulting materials have rings that can literally slide along the polymer chains, providing anchor points for cross-linking that can move when the materials are mechanically strained.

Mayer said this proof-of-concept research could someday be used to create pliable networks of polymers, and said his design fits with the theoretical models used by polymer physicists.

“Their theoretical models show polymers as cross-linked by such rings,” he said. “Now we actually have a well-defined method to prepare materials that fit these descriptions.”

To find a copy of the report, visit:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/pdf/ja806122r.pdf.
CONTACT: Mike Mayer, assistant professor, Department of Chemistry and Biochemistry, Texas Tech University, (806) 742-1289, or mf.mayer@ttu.edu.

Media Contact

Cory Chandler Newswise Science News

More Information:

http://www.ttu.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors