Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SUTD researchers resolve a major mystery in 2D material electronics

11.09.2018

Schottky diode is composed of a metal in contact with a semiconductor. Despite its simple construction, Schottky diode is a tremendously useful component and is omnipresent in modern electronics. Schottky diode fabricated using two-dimensional (2D) materials have attracted major research spotlight in recent years due to their great promises in practical applications such as transistors, rectifiers, radio frequency generators, logic gates, solar cells, chemical sensors, photodetectors, flexible electronics and so on.

The understanding of 2D material-based Schottky diode is, however, plagued by multiple mysteries. Several theoretical models have co-existed in the literatures and a model is often selected a priori without rigorous justifications. It is not uncommon to see a model, whose underlying physics fundamentally contradicts with the physical properties of 2D materials, being deployed to analyse a 2D material Schottky diode.


Schematic drawing of a 2D-material-based lateral (left) and vertical (right) Schottky diode. For broad classes of 2D materials, the current-temperature relation can be universally described by a scaling exponent of 3/2 and 1, respectively, for lateral and vertical Schottky diodes.

Credit: Singapore University of Technology and Design

Reporting in Physical Review Letters, researchers from the Singapore University of Technology and Design (SUTD) have made a major step forward in resolving the mysteries surrounding 2D material Schottky diode. By employing a rigorous theoretical analysis, they developed a new theory to describe different variants of 2D-material-based Schottky diodes under a unifying framework. The new theory lays down a foundation that helps to unite prior contrasting models, thus resolving a major confusion in 2D material electronics.

"A particularly remarkable finding is that the electrical current flowing across a 2D material Schottky diode follows a one-size-fits-all universal scaling law for many types of 2D materials," said first-author Dr. Yee Sin Ang from SUTD.

Universal scaling law is highly valuable in physics since it provides a practical "Swiss knife" for uncovering the inner workings of a physical system. Universal scaling law has appeared in many branches of physics, such as semiconductor, superconductor, fluid dynamics, mechanical fractures, and even in complex systems such as animal life span, election results, transportation and city growth.

The universal scaling law discovered by SUTD researchers dictates how electrical current varies with temperature and is widely applicable to broad classes of 2D systems including semiconductor quantum well, graphene, silicene, germanene, stanene, transition metal dichalcogenides and the thin-films of topological solids.

"The simple mathematical form of the scaling law is particularly useful for applied scientists and engineers in developing novel 2D material electronics," said co-author Prof. Hui Ying Yang from SUTD.

The scaling laws discovered by SUTD researchers provide a simple tool for the extraction of Schottky barrier height - a physical quantity critically important for performance optimisation of 2D material electronics.

"The new theory has far reaching impact in solid state physics," said co-author and principal investigator of this research, Prof. Lay Kee Ang from SUTD, "It signals the breakdown of classic diode equation widely used for traditional materials over the past 60 years, and shall improve our understanding on how to design better 2D material electronics."

Media Contact

Melissa Koh
melissa_koh@sutd.edu.sg
65-649-98742

http://www.sutd.edu.sg 

Melissa Koh | EurekAlert!
Further information:
http://dx.doi.org/10.1103/PhysRevLett.121.056802

More articles from Materials Sciences:

nachricht Understanding high efficiency of deep ultraviolet LEDs
22.02.2019 | Tohoku University

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>