Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity without cooling

03.12.2014

An infrared laser pulse briefly modifies the structure of a high-temperature superconductor and thus removes its electrical resistance even at room temperature

Superconductivity is a remarkable phenomenon: superconductors can transport electric current without any resistance and thus without any losses whatsoever. It is already in use in some niche areas, for example as magnets for nuclear spin tomography or particle accelerators. However, the materials must be cooled to very low temperatures for this purpose.


No resistance at room temperature: The resonant excitation of oxygen oscillations (blurred) between CuO2 double layers (light blue, Cu yellowy orange, O red) with short light pulses leads to the atoms in the crystal lattice briefly shifting away from their equilibrium positions. This shift brings about an increase in the separations of CuO2 layers within a double layer and a simultaneous decrease in the separations between double layers. It is highly probable that this enhances the superconductivity.

© Jörg Harms/MPI for the Structure and Dynamics of Matter

But during the past year, an experiment has provided some surprise. With the aid of short infrared laser pulses, researchers have succeeded for the first time in making a ceramic superconducting at room temperature – albeit for only a few millionths of a microsecond. An international team, in which physicists from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg have made crucial contributions, has now been able to present a possible explanation of the effect in the journal Nature:

The scientists believe that laser pulses cause individual atoms in the crystal lattice to shift briefly and thus enhance the superconductivity. The findings could assist in the development of materials which become superconducting at significantly higher temperatures and would thus be of interest for new applications.

In the beginning, superconductivity was known only in a few metals at temperatures just above absolute zero at minus 273 degrees Celsius. Then, in the 1980s, physicists discovered a new class, based on ceramic materials. These already conduct electricity at temperatures of around minus 200 degrees Celsius without losses, and were therefore called high-temperature superconductors.

One of these ceramics is the compound yttrium barium copper oxide (YBCO). It is one of the most promising materials for technical applications such as superconducting cables, motors and generators.

The YBCO crystal has a special structure: thin double layers of copper oxide alternate with thicker intermediate layers which contain barium as well as copper and oxygen. The superconductivity has its origins in the thin double layers of copper dioxide. This is where electrons can join up to form so-called Cooper pairs. These pairs can “tunnel” between the different layers, meaning they can pass through these layers like ghosts can pass through walls, figuratively speaking – a typical quantum effect.

The crystal only becomes superconducting below a “critical temperature”, however, as only then do the Cooper pairs tunnel not only within the double layers, but also “spirit” through the thicker layers to the next double layer. Above the critical temperature, this coupling between the double layers is missing, and the material becomes a poorly conducting metal.

The result helps material scientists to develop new superconductors

In 2013, an international team working with Max Planck researcher Andrea Cavalleri discovered that when YBCO is irradiated with infrared laser pulses it briefly becomes superconducting at room temperature. The laser light had apparently modified the coupling between the double layers in the crystal. The precise mechanism remained unclear, however – until the physicists were able to solve the mystery with an experiment at the LCLS in the US, the world’s most powerful X-ray laser.

“We started by again sending an infrared pulse into the crystal, and this excited certain atoms to oscillate,” explains Max Planck physicist Roman Mankowsky, lead author of the current Nature study. “A short time later, we followed it with a short X-ray pulse in order to measure the precise crystal structure of the excited crystal.”

The result: The infrared pulse had not only excited the atoms to oscillate, but had also shifted their position in the crystal as well. This briefly made the copper dioxide double layers thicker - by two picometres, or one hundredth of an atomic diameter - and the layer between them became thinner by the same amount. This in turn increased the quantum coupling between the double layers to such an extent that the crystal became superconducting at room temperature for a few picoseconds.

On the one hand, the new result helps to refine the still incomplete theory of high-temperature superconductors. “On the other, it could assist materials scientists to develop new superconductors with higher critical temperatures,” says Mankowsky. “And ultimately to reach the dream of a superconductor that operates at room temperature and needs no cooling at all.”

Until now, superconducting magnets, motors and cables must be cooled to temperatures far below zero with liquid nitrogen or helium. If this complex cooling were no longer necessary, it would mean a breakthrough for this technology.


Contact


Prof. Dr. Andrea Cavalleri
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Phone: +49 40 8998-5354

Email: andrea.cavalleri@mpsd.mpg.de

Dr. Michael Först
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Phone: +49 40 8998-5360

Fax: +49 40 8998-1958

Email: michael.foerst@mpsd.cfel.de

Roman Mankowsky
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Phone: +49 40 8998-6261

Email: roman.mankowsky@mpsd.mpg.de


Original publication
R. Mankowsky, A. Subedi, M. Först, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges & A. Cavalleri

Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5

Nature, 4 December 2014; doi:10.1038/nature13875

Prof. Dr. Andrea Cavalleri | Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
Further information:
http://www.mpg.de/8785897/superconductivity-room-temperature

More articles from Materials Sciences:

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

nachricht Get rid of sweat at the push of a button
19.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>