Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting nanowire memory cell, miniaturized technology

14.06.2017

Developing a superconducting computer that would perform computations at high speed without heat dissipation has been the goal of several research and development initiatives since the 1950s. Such a computer would require a fraction of the energy current supercomputers consume, and would be many times faster and more powerful. Despite promising advances in this direction over the last 65 years, substantial obstacles remain, including in developing miniaturized low-dissipation memory.

Researchers at the University of Illinois at Urbana-Champaign have developed a new nanoscale memory cell that holds tremendous promise for successful integration with superconducting processors. The new technology, created by Professor of Physics Alexey Bezryadin and graduate student Andrew Murphy, in collaboration with Dmitri Averin, a professor of theoretical physics at State University of New York at Stony Brook, provides stable memory at a smaller size than other proposed memory devices.


Superconducting nanoscale memory device. The binary information is encoded in the direction of the electrical current in the loop. When the current flows clockwise, this is considered a '0' state of the memory device. When it flows counter clockwise, this is a '1' state of the memory device. Because the electrons are superconducting, the current flows indefinitely in the loops, making the memory nonvolatile. (a) A photograph of the memory device, consisting of a superconducting strip of Mo75Ge25 (yellow) with a pair of superconducting nanowires forming a closed loop (also yellow): The width of the nanowires is 24 nm and 22 nm, as marked. (b) The critical current, i.e., the maximum current which can be injected into the device without destroying superconductivity, is plotted as a function of magnetic field. To set the memory state '0', we apply positive current targeting the shaded diamond. To set the memory to the state '1', a negative current is applied (as the same external magnetic field). To read out the memory state, the current is ramped to a higher value, as shown by the red rhombus, and the current value at which voltage occurs is measured. Such value is the critical current. Its statistical distribution is shown in (c). The measured value of the critical current depends on the pre-set memory value, '0' or '1'. Thus by measuring the critical current we are able to determine the state of the memory cell.

Images courtesy of Alexey Bezryadin and Andrew Murphey, University of Illinois at Urbana-Champaign

The device comprises two superconducting nanowires, attached to two unevenly spaced electrodes that were "written" using electron-beam lithography. The nanowires and electrodes form an asymmetric, closed superconducting loop, called a nanowire 'SQUID' (superconducting quantum interference device). The direction of current flowing through the loop, either clockwise or counterclockwise, equates to the "0" or "1" of binary code.

The memory state is written by applying an oscillating current of a particular magnitude, at a specific magnetic field. To read the memory state the scientists ramp up the current and detect the current value at which superconductivity gets destroyed. It turns out that such destruction or critical current is different for the two memory states, "0" or "1".

The scientists tested memory stability, delaying reading of the state, and found no instances of memory loss. The team performed these experiments on two nanowire SQUIDS, made of the superconductor Mo75Ge25, using a method called molecular templating. The results are published in the June 13, 2017 New Journal of Physics (v.19, p.063015).

Bezryadin comments, "This is very exciting. Such superconducting memory cells can be scaled down in size to the range of few tens of nanometers, and are not subject to the same performance issues as other proposed solutions."

Murphy adds, "Other efforts to create a scaled-down superconducting memory cell weren't able to reach the scale we have. A superconducting memory device needs to be cheaper to manufacture than standard memory now, and it needs to be dense, small, and fast."

Up to now, the most promising supercomputing memory devices, called 'single-flux quanta' devices, rely on manipulating circuits composed of Josephson junctions and inductive elements. These are in the micrometer range, and miniaturization of these devices is limited by the size of the Josephson junctions and their geometric inductances. Some of these also require ferromagnetic barriers to encode information, where Bezryadin and Murphy's device does not require any ferromagnetic components and eliminates magnetic-field cross-talk.

"Because the kinetic inductance increases with decreasing cross-sectional dimensions of the wire, nanowire SQUID memory elements could be reduced further, into the range of tens of nanometers," Bezryadin continues.

The researchers argue that this device can operate with a very low dissipation of energy, if the energies of two binary states are equal or near equal. The theoretical model for such operations was developed in collaboration with Averin The switching between the states of equal energy will be achieved either by quantum tunneling or by adiabatic processes composed of multiple jumps between the states.

In future work, Bezryadin plans to address the measurements of the switching time and to study larger arrays of the nanowire squids in functioning as arrays of memory elements. They will also test superconductors with higher critical temperatures, with the goal of a memory circuit that would operate at 4 Kelvin. Rapid operations will be achieved by utilizing microwave pulses.

###

This research is supported by the National Science Foundation, Division of Materials Research.

Siv Schwink | EurekAlert!

More articles from Materials Sciences:

nachricht Materials scientist creates fabric alternative to batteries for wearable devices
12.11.2018 | University of Massachusetts at Amherst

nachricht A new path through the looking-glass
12.11.2018 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>