Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting Current Limiter Guarantees Electricity Supply of the Boxberg Power Plant

16.01.2012
New Superconducting Materials Improve the Efficiency and Reliability of Grids and Systems

For the first time, a superconducting current limiter based on YBCO strip conductors has now been installed at a power plant. At the Boxberg power plant of Vattenfall, the current limiter protects the grid for own consumption that is designed for 12 000 volts and 800 amperes against damage due to short circuits and voltage peaks. The new technology co-developed by Karlsruhe Institute of Technology and made by Nexans SuperConductors enhances the intrinsic safety of the grid and may help reduce the investment costs of plants.

“For a long time, high-temperature superconductors were considered to be difficult to handle, too brittle, and too expensive for general industrial applications,” explains project manager Wilfried Goldacker from Karlsruhe Institute of Technology. “The second generation of high-temperature superconductor wires based on YBCO ceramics is much more robust. Properties have been improved.” Superconducting current limiters work reversibly. In case of current peaks after short circuits in the grid, no components are destroyed. The limiter automatically returns to the normal state of operation after a few seconds only. Consequently, the power failure is much shorter than in case of conventional current limiters, such as household fuses, whose components are destroyed and have to be replaced with a high time and cost expenditure.

“Superconducting current limiters have a number of advantages for the stability of medium- and high-voltage grids,” explains Mathias Noe, Head of the Institute of Technical Physics of Karlsruhe Institute of Technology. Reliable, compact current limiters enhance the operation stability of power grids and allow for a simplification of the grid structure. As they are protected against current peaks, decentralized energy generators, such as wind and solar systems, can be integrated much better in grids. Expensive components in the existing grid are protected efficiently, components in future grids can be designed for smaller peak currents, and transformers will no longer be necessary. Investment costs of power plants and grids will be reduced. Moreover, superconducting current limiters on the basis of YBCO can also be applied in high-voltage grids of more than 100 kilovolts for better protection against power failures in the future.

YBCO stands for the constituents of the superconductor: Yttrium, barium, copper, and oxygen. An YBCO crystal layer of about 1 micrometer in thickness is grown directly on a stainless steel strip of a few millimeters in width that gives the ceramics the necessary stability. Below a temperature of 90° Kelvin or minus 183° Celsius, the material becomes superconductive. However, superconductivity collapses abruptly when the current in the conductor exceeds the design limits. This effect is used by the current limiter. In case of current peaks in the grid, the superconductor loses its conductivity within fractions of a second and the current will flow through the stainless steel strip only, which has a much higher resistance and, thus, limits the current. The heat arising is removed by the cooling system of the superconductor. A few seconds after the short circuit, it is returned to normal operation in the superconducting state. YBCO superconducting layers on stainless steel strips are more stable and operation-friendly than first-generation superconductors based on BSCCO ceramics. Moreover, their production does not require any noble metals, such as silver, and will presumably be cheaper.

The superconducting current limiter was developed in the past two years under the ENSYSTROB project. The project partners are Karlsruhe Institute of Technology, Nexans SuperConductors, TU Dortmund, and BTU Cottbus. The field test will be carried out at the user, the Vattenfall utility company. The project was funded with about EUR 1.3 million by the Federal Ministry of Economics. The results of the project are of high relevance, as the functionality of current limitation may be integrated in superconducting transformers and energy cables in the future.

Nexans Deutschland
Nexans in Germany is one of the leading suppliers of cables in Europe. The company offers a large scope of high-voltage cables, systems, and components for telecommunication and the energy sector. The company’s program is complemented by superconducting materials, components, and systems as well as by Cryoflex transfer systems and special machines for cabling industry. Production takes place in Germany and abroad. Further information may be obtained at www.nexans.de

Karlsruhe Institute of Technology (KIT) is one of Europe’s leading energy research establishments. The KIT Energy Center pools fundamental research with applied research into all relevant energy sources for industry, households, services, and mobility. Holistic assessment of the energy cycle also covers conversion processes and energy efficiency. The KIT Energy Center links competences in engineering and science with know-how in economics, the humanities, and social science as well as law. The activities of the KIT Energy Center are organized in seven topics: Energy conversion, renewable energies, energy storage and distribution, efficient energy use, fusion technology, nuclear power and safety, and energy systems analysis.

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

kes, 13.01.2012For further information, please contact:
Kosta Schinarakis
PKM, Themenscout
Tel.: +49 721 608-41956
Fax: +49 721 608-43568
E-Mail:schinarakis@kit.edu

Kosta Schinarakis | EurekAlert!
Further information:
http://www.kit.edu

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>