Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success in Self-Assembly of Quantum Dots with World’s Highest Density

19.07.2012
The NIMS Photonic Materials Unit is developing an advanced self-assembly technique for semiconductor quantum dots called droplet epitaxy, which is an original NIMS technology, and recently succeeded in the development of a new self-assembly technique for quantum dots with the world’s highest surface density, greatly exceeding the previously reported value.
Dr. Takaaki Mano, a Senior Researcher, Dr. Masafumi Jo, a Post Doctoral Fellow, and Dr. Yoshiki Sakuma, Group Leader of the Quantum Nanostructures Group, Photonic Materials Unit (Unit Director: Kazuaki Sakoda), National Institute for Materials Science (President: Sukekatsu Ushioda) are engaged in developing an advanced self-assembling technology for semiconductor quantum dots called droplet epitaxy, which is an original NIMS technology, and recently succeeded in the development of a new self-assembling technology for quantum dots with the world’s highest surface density, greatly exceeding the previously reported value. In addition, the NIMS researchers observed strong photoluminescence (PL) emission from the assembled quantum dots groups, suggesting that the developed technology is also effective for realizing excellent crystal quality.

Quantum dots have attracted heightened attention in recent years as a technology for achieving substantial improvement in the properties of semiconductor lasers and development of ultra-high efficiency photovoltaic cells based on a new operating principle. In the newly-developed technology, (1) use of a substrate with a high index surface, (2) formation and crystallization of gallium droplets at near-room temperature, and (3) suppression of the droplet coalescence by optimization of the amount of supplied gallium were introduced in the gallium arsenide (GaAs) quantum dot formation by droplet epitaxy. As a result, the NIMS team succeeded in self-assembly of GaAs quantum dots with an extremely high surface density of 7.3 x 1011/cm2 in a lattice-matched system. The team also discovered that defects originating in crystallization at near-room temperature can be restored by applying ingenuity to the heat treatment process for the crystallized quantum dots, and strong PL emission can be observed from the quantum dots.

Droplet epitaxy has attracted attention as the only method which enables self-assembly of quantum dots in lattice-matched systems, and in principle has the advantage that a large number of high quality quantum dot layers can be stacked in close proximity with maintaining high crystallinity. Therefore, if the ultra-high density in-plane quantum dots developed in this research are stacked in close proximity, it will be possible to produce quantum dot materials with extremely high volumetric density, which cannot be realized with the conventional technology. Thus, it is expected to be possible to achieve higher performance in optical and electronic devices which use quantum dots as a result of this research achievement.

Details of this research were published in the online edition of Applied Physics Letters, which is an American scientific journal in the field of applied physics, and are scheduled for publication in Vol. 100, No. 21 of the print edition.

Atomic force microscope (AFM) image of ultra-high surface density quantum dots formed by reducing the amount of gallium irradiation to 3 monolayer at a growth temperature of 30°C. An ultra-high surface density of 7.3 x 1011/cm2 was achieved. © NIMS

For more details:

Takaaki Mano
Senior Researcher
Photonic Materials Unit
National Institute for Materials Science
TEL:+81-29-859-2790

E-Mail: MANO.Takaaki=nims.go.jp
(Please change "=" to "@")

Masafumi Jo
Post-doctoral Researcher
Photonic Materials Unit
National Institute for Materials Science
TEL: +81-29-859-2702

E-Mail: JO.Masafumi=nims.go.jp
(Please change "=" to "@")

For general inquiry:

NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Superconducting vortices quantize ordinary metal
25.06.2018 | Moscow Institute of Physics and Technology

nachricht Beyond conventional solution-process for 2-D heterostructure
22.06.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>