Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sublimation, not melting: Graphene surprises researchers again

06.01.2020

Physicists from the Moscow Institute of Physics and Technology and the Institute for High Pressure Physics of the Russian Academy of Sciences have used computer modeling to refine the melting curve of graphite that has been studied for over 100 years, with inconsistent findings. They also found that graphene "melting" is in fact sublimation. The results of the study came out in the journal Carbon.

Graphite is a material widely used in various industries -- for example in heat shields for spacecraft -- so accurate data on its behavior at ultrahigh temperatures is of paramount importance. Graphite melting has been studied since the early 20th century.


Abstraction

Credit: MIPT

About 100 experiments have placed the graphite melting point at various temperatures between 3,000 and 7,000 kelvins. With a spread so large, it is unclear which number is true and can be considered the actual melting point of graphite. The values returned by different computer models are also at variance with each other.

A team of physicists from MIPT and HPPI RAS compared several computer models to try and find the matching predictions. Yuri Fomin and Vadim Brazhkin used two methods: classical molecular dynamics and ab initio molecular dynamics.

The latter accounts for quantum mechanical effects, making it more accurate. The downside is that it only deals with interactions between a small number of atoms on short time scales. The researchers compared the obtained results with prior experimental and theoretical data.

Fomin and Brazhkin found the existing models to be highly inaccurate. But it turned out that comparing the results produced by different theoretical models and finding overlaps can provide an explanation for the experimental data.

As far back as 1960s, the graphite melting curve was predicted to have a maximum. Its existence points to complex liquid behavior, meaning that the structure of the liquid rapidly changes on heating or densification.

The discovery of the maximum was heavily disputed, with a number of studies confirming and challenging it over and over. Fomin and Brazhkin's results show that the liquid carbon structure undergoes changes above the melting curve of graphene. The maximum therefore has to exist.

The second part of the study is dedicated to studying the melting of graphene. No graphene melting experiments have been conducted. Previously, computer models predicted the melting point of graphene at 4,500 or 4,900 K. Two-dimensional carbon was therefore considered to have the highest melting point in the world.

"In our study, we observed a strange 'melting' behavior of graphene, which formed linear chains. We showed that what happens is it transitions from a solid directly into a gaseous state.

This process is called sublimation," commented Associate Professor Yuri Fomin of the Department of General Physics, MIPT. The findings enable a better understanding of phase transitions in low-dimensional materials, which are considered an important component of many technologies currently in development, in fields from electronics to medicine.

The researchers produced a more precise and unified description of how the graphite melting curve behaves, confirming a gradual structural transition in liquid carbon. Their calculations show that the melting temperature of graphene in an argon atmosphere is close to the melting temperature of graphite.

###

The study reported in this story was supported by the Russian Science Foundation and used the computing resources of the Complex for Simulation and Data Processing for Mega-Science Facilities, a federal center of shared research facilities at Kurchatov Institute.

Media Contact

Varvara Bogomolova
bogomolova@phystech.edu
7-916-147-4496

 @phystech_en

https://mipt.ru/english/ 

Varvara Bogomolova | EurekAlert!
Further information:
https://mipt.ru/english/news/sublimation_not_melting_graphene_surprises_researchers_again
http://dx.doi.org/10.1016/j.carbon.2019.10.065

More articles from Materials Sciences:

nachricht Caterpillars of the wax moth love eating plastic: Fraunhofer LBF investigates degradation process
06.08.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Machine learning methods provide new insights into organic-inorganic interfaces
04.08.2020 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>