Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sticking power: new adhesive earns patent, could find place in space

24.03.2011
A recently patented adhesive made by Kansas State University researchers could become a staple in every astronaut's toolbox.

The patent, "pH dependent adhesive peptides," was issued to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing technology transfer activities of K-State. The patent covers an adhesive made from peptides -- a compound containing two or more amino acids that link together -- that increases in strength as moisture is removed.

It was created by John Tomich, professor of biochemistry, and Xiuzhi "Susan" Sun, professor of grain science and industry. Assisting in the research was Takeo Iwamoto, an adjunct professor in biochemistry, and Xinchun Shen, a former postdoctoral researcher.

"The adhesive we ended up developing was one that formed nanoscale fibrils that become entangled, sort of like Velcro. It has all these little hooks that come together," Tomich said. "It's a mechanical type of adhesion, though, not a chemical type like most commercial adhesives."

Because of its unusual properties, applications will most likely be outside the commercial sector, Tomich said.

For example, unlike most adhesives that become brittle as moisture levels decrease, the K-State adhesive's bond only becomes stronger. Because of this, it could be useful in low-moisture environments like outer space, where astronauts could use it to reattach tiles to a space shuttle.

Conversely, its deterioration from water could also serve a purpose.

"It could be used as a timing device or as a moisture detection device," Tomich said. "There could be a circuit or something that when the moisture got to a certain level, the adhesive would fail and break the circuit, sounding an alarm."

The project began nearly a decade ago as Sun and a postdoctal researcher were studying the adhesive properties of soybean proteins. Needing an instrument to synthesize protein peptides, Sun contacted Tomich.

Serendipitously, Tomich's lab had developed a peptide some time ago that had cement-like properties. Tomich said he knew it was unusual but had set it aside to pursue other interests.

"When Dr. Sun and I resurrected this protein, we didn't use the whole thing -- just a segment of it," Tomich said. "We isolated a certain segment where the cells are highly attracted to each other and form these fibrils."

Since their collaboration Tomich has taken the same sequence and changed the way it was designed. The new peptide, he said, will have an eye toward gene therapy.

Sun's lab is trying to optimize the sequence against adhesion, as well as study how peptide sequences influence adhesion properties and surface energy.

"I continue studying protein structures and functional properties in terms of adhesion -- folding, aggregation, surface energy and gelling properties -- so we can rationally design and develop biobased adhesives using plant proteins," she said.

The research foundation is working with the National Institute for Strategic Technology Acquisition and Commercialization to license the patent.

John Tomich | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Materials Sciences:

nachricht A materials scientist’s dream come true
21.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>