Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splicing together a thin film in motion

15.03.2018

Technology reliant on thin film materials has become ubiquitous in our everyday life. Control of the electronic properties of materials at the nanometer level is reflected in advances of computers, solar energy and batteries. The electronic behavior of thin films is heavily influenced by the contact with their surroundings, as exemplified by the recent discovery of 2D superconductivity at a thin film interface. However, information about how such entwined states come into existence is limited by the lack of tools capable of visualizing such buried interfaces.

The recent work of Dr. Kenneth Beyerlein, a researcher at the Max Planck Institute for Structure and Dynamics (MPSD) in Hamburg, provides a new approach to imaging thin films on the atomic scale. It is made possible using an algorithm for image recovery that splices together a sequence of frames in time. The algorithm is showcased in a publication of the Proceedings of the National Academy of Sciences (PNAS) by recovering the response of a Neodymium Nickelate thin film to a disturbance initiated at its interface.


The principle of time-spliced imaging is depicted here for a simulated evolution of magnetic field lines from four rotating magnetic dipoles that have the same initial anti-ferromagnetic structure as the studied material, neodymium nickelate. The early frames in the time series pin down the set of possible reconstructions at later times, sharpening the image recovery by ruling out erroneous solutions.

Credit: Jörg Harms / MPSD

This insight supported previous experimental findings that the magnetization dynamics propagate through the film faster than the speed of sound. Such fast control of the magnetization is important for the development of new computing devices that use light to control the electronic state of a material.

Fine features can be studied under a microscope because lenses magnify an object’s image. However, the maximum resolution of this process is limited by the wavelength of light used. As visible light is between 400 nm (blue) and 700 nm (red), objects smaller than this will appear blurry under a microscope - making atoms undiscernible. Visualizing atoms with light requires the use of X-rays, as their wavelength matches the size of an atom.

However, efficient lenses for X-rays are difficult to make, with the best resolution so far achieved being just less than 10 nm. Nonetheless, if the X-rays are coherent, like light from a laser, a high-resolution image of the object can be recovered computationally, using a methodology called iterative phase retrieval. This method does not rely on the object being repeated in a lattice, which the basis of X-ray crystallography.

Iterative phase retrieval has been widely applied to study two-dimensional and three-dimensional problems like nanoparticle growth, magnetism domain dynamics and the structure of viruses. However, its application to one-dimensional imaging is fraught with the problem that in some cases multiple different images of an object are found. This ambiguity in one dimension arises from a decreased amount of information that can be used to constrain the solution as compared to higher dimensions.

To overcome this, Beyerlein compared the solutions obtained from different time steps in a set of time-resolved X-ray diffraction rocking curve measurements. The spliced-together 1D profiles showed a high degree of similarity between each time step, confirming the fidelity of the recovered images. On a fundamental level, this offers a new way to constrain 1D phase retrieval, extending the method and allowing it to be applied to a new class of scientific problems.

Using this approach Beyerlein was able to recover the heterogeneous evolution of the magnetization in a thin film in response to the excitation of a phonon in the substrate. The anti-ferromagnetic order in the film was found to be instantly destroyed at the interface, and a demagnetization front propagated into the film at roughly twice the speed of sound. This process happened in just 10 picoseconds and was captured with 5 nm resolution using femtosecond mid-infrared and X-ray laser pulses at the LINAC Coherent Light Source.

This study is part of a larger effort in the group of Professor Andrea Cavalleri using light to track the non-equilibrium correlated states of condensed matter caused by driving lattice dynamics.

*) Full picture caption: "The principle of time-spliced imaging is depicted here for a simulated evolution of magnetic field lines from four rotating magnetic dipoles that have the same initial anti-ferromagnetic structure as the studied material, neodymium nickelate. The early frames in the time series pin down the set of possible reconstructions at later times, sharpening the image recovery by ruling out erroneous solutions."

Weitere Informationen:

http://doi.org/10.1073/pnas.1716160115 (PNAS)
http://www.mpsd.mpg.de (Max Planck Institute for the Structure and Dynamics of Matter)

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie

Further reports about: Max Planck Institute Max-Planck-Institut X-ray thin film wavelength

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>