Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar-powered hydrogen fuels a step closer

09.05.2019

Researchers have used a graphite coating that makes perovskite solar cells waterproof

A cheaper, cleaner and more sustainable way of making hydrogen fuel from water using sunlight is step closer thanks to new research from the University of Bath's Centre for Sustainable Chemical Technologies.


Researchers used graphite film to coat perovskite solar cells and waterproof them.

Credit. Isabella Poli

With the pressure on global leaders to reduce carbon emissions significantly to solve a climate change emergency, there is an urgent need to develop cleaner energy alternatives to burning fossil fuels. Hydrogen is a zero carbon emission fuel alternative that can be used to power cars, producing only water as a waste product.

It can be made by splitting water into hydrogen and oxygen, however the process requires large amounts of electricity. Most electricity is made by burning methane so researchers at the University of Bath are developing new solar cells that use light energy directly to split water.

Most solar cells currently on the market are made of silicon, however they are expensive to make and require a lot of very pure silicon to manufacture. They are also quite thick and heavy, which limits their applications.

Perovskite solar cells, using materials with the same 3D structure as calcium titanium oxide, are cheaper to make, thinner and can be easily printed onto surfaces. They also work in low light conditions and can produce a higher voltage than silicon cells, meaning they could be used indoors to power devices without the need to plug into the mains.

The downside is they are unstable in water which presents a huge obstacle in their development and also limits their use for the direct generation of clean hydrogen fuels.

The team of scientists and chemical engineers, from the University of Bath's Centre for Sustainable Chemical Technologies, has solved this problem by using a waterproof coating from graphite, the material used in pencil leads.

They tested the waterproofing by submerging the coated perovskite cells in water and using the harvested solar energy to split water into hydrogen and oxygen. The coated cells worked underwater for 30 hours - ten hours longer than the previous record.

After this period, the glue sandwiching the coat to the cells failed; the scientists anticipate that using a stronger glue could stabilise the cells for even longer.

Previously, alloys containing indium were used to protect the solar cells for water splitting, however indium is a rare metal and is therefore expensive and the mining process to obtain it is not sustainable.

The Bath team instead used commercially available graphite, which is very cheap and much more sustainable than indium.

Dr Petra Cameron, Senior Lecturer in Chemistry, said: "Perovskite solar cell technology could make solar energy much more affordable for people and allow solar cells to be printed onto roof tiles. However at the moment they are really unstable in water - solar cells are not much use if they dissolve in the rain!'

"We've developed a coating that could effectively waterproof the cells for a range of applications. The most exciting thing about this is that we used commercially available graphite, which is much cheaper and more sustainable than the materials previously tried."

Perovskite solar cells produce a higher voltage than silicon based cells, but still not enough needed to split water using solar cells alone. To solve this challenge, the team is adding catalysts to reduce the energy requirement needed to drive the reaction.

Isabella Poli, Marie Curie FIRE Fellow and PhD student from the Centre for Sustainable Chemical Technologies, said: "Currently hydrogen fuel is made by burning methane, which is neither clean nor sustainable.

"But we hope that in the future we can create clean hydrogen and oxygen fuels from solar energy using perovskite cells."

###

The research was done in collaboration with the SPECIFIC team at Swansea University.

The study is published in the open access journal Nature Communications.

Media Contact

Vicky Just
v.j.just@bath.ac.uk
07-966-341-357

 @uniofbath

http://www.bath.ac.uk 

Vicky Just | EurekAlert!
Further information:
https://www.bath.ac.uk/announcements/solar-powered-hydrogen-fuels-a-step-closer/
http://dx.doi.org/10.1038/s41467-019-10124-0

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>