Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Skoltech scientists developed a new cathode material for metal-ion batteries

24.03.2020

Researchers from the Skoltech Center for Energy Science and Technology (CEST) created a new cathode material based on titanium fluoride phosphate, which enabled achieving superior energy performance and stable operation at high discharge currents.

Nowadays, the rapid development of electric transport and renewable energy sources calls for commercially accessible, safe and inexpensive energy storage solutions based on metal-ion batteries.


Researchers from the Skoltech Center for Energy Science and Technology (CEST) created a new cathode material based on titanium fluoride phosphate, which enabled achieving superior energy performance and stable operation at high discharge currents.

Credit: Skoltech

The high price of the existing lithium-ion technology is its major hurdle, which is further exacerbated by the speculations that the world may soon run out of lithium and cobalt essential to the production of the cathode - the battery's key component that determines its functional characteristics and energy performance.

The search for an alternative technology involves tremendous effort toward creating batteries using more accessible and less expensive elements, such as potassium, instead of lithium. As for cobalt, it can be replaced by the more common and environmentally friendly iron, manganese and even titanium.

The 10th most common element in the Earth's crust, titanium is mined all over the world and the main titanium-containing reagents are easily available, stable and non-toxic. But despite these obvious advantages, the low electrochemical potential that limits the battery's attainable specific energy has long been a major stumbling block for using titanium compounds in cathode materials.

Skoltech scientists succeeded in creating a commercially attractive advanced cathode material based on titanium fluoride phosphate, KTiPO4F, exhibiting a high electrochemical potential and unprecedented stability at high charge/discharge rates.

Professor Stanislav Fedotov: "This is an exceptional result that literally destroys the dominant paradigm long-present in the "battery community" stating that titanium-based materials can perform as anodes only, due to titanium's low potential. We believe that the discovery of the "high-voltage" KTiPO4F can give fresh impetus to the search and development of new titanium-containing cathode materials with unique electrochemical properties."

Professor Artem Abakumov, Director of CEST: "From the perspective of inorganic chemistry and solid state chemistry, this is an excellent example showing once again that rather than blindly following the generally accepted dogmas, we should look at things with eyes wide open. If you choose the right chemical composition, crystal structure and synthesis method, the impossible becomes possible and you can find new materials with unexpected properties and new opportunities for practical applications. This has been brilliantly demonstrated by Professor Fedotov and his team."

Media Contact

Alina Chernova
alina.chernova@skolkovotech.ru
7-905-565-3633

http://www.skoltech.ru 

Alina Chernova | EurekAlert!
Further information:
https://www.skoltech.ru/en/2020/03/skoltech-scientists-developed-a-new-cathode-material-for-metal-ion-batteries/
http://dx.doi.org/10.1038/s41467-020-15244-6

More articles from Materials Sciences:

nachricht A remote control for neurons
04.06.2020 | College of Engineering, Carnegie Mellon University

nachricht Smart textiles made possible by flexible transmission lines
03.06.2020 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>