Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulation-based matchmaking for Shape Memory Alloys

01.07.2010
RUB-researchers discover Shape-Memory Metals with unprecedented functional stability / Cover story in „Advanced Functional Materials“

A new shape memory alloy with up to now unprecedented functional stability was developed by researchers from the Institute for Materials at the Ruhr-Universität Bochum in cooperation with researchers from the USA and Japan. Based on a theoretical prediction, they used combinatorial materials science methods, i.e. so-called materials libraries, for a targeted search of optimized alloy compositions. The result consists of four components: titanium, nickel, copper and palladium.

From the new material, the researchers expect a stable shape memory effect and improved lifetime, e.g. for applications in medical devices such as stents. The scientists report their results in the noted journal “Advanced Functional Materials”, which selected their contribution as cover story.

Shape memory alloys

Shape memory alloys (SMAs) are materials that after being deformed mechanically can return to their original shape upon heating (shape memory effect) and/or allow for “elastic” strains up to 10 % (superelasticity). Those remarkable effects are based on a reversible martensitic phase transformation: a change in the crystal lattice as a function of temperature or stress. However, such changes do not leave the material untouched. Defects are formed during cyclic deformations, which accumulate and lead to decreasing shape memory properties. “The defects originate from the interface between the high-temperature phase (austenite) and the low-temperature phase (martensite) as a result of the crystallographic incompatibility”, explains Robert Zarnetta from the Materials Research Department at the RUB.

Four matching partners

Theoretical calculations from the co-workers in the USA predicted that the incompatibility can vanish for alloys with special lattice parameters, such that the high-temperature and the low-temperature phase are compatible. As optimal partners for such an alloy, titanium, nickel, copper and palladium were identified by theory. The successful experimental “matchmaking” was realized by using thin film materials libraries, which enabled the screening of a large portion of the four component (quaternary) composition space using dedicated high-throughput characterization tools. “To find or optimize the special composition in the quaternary alloy system using conventional methods would have been extremely challenging”, explains Prof. Dr. Alfred Ludwig (Chair Materials for Microtechnology) and thus highlights the advantage of the combinatorial materials science approach.

Compatible crystal lattices promote stability

Next to the discovery of the special alloy composition, the scientists also determined the underlying composition-structure-property relationship, which was subsequently used to successfully transfer the thin film results to bulk material. Thus, the fundamental relation between the crystal structure of a shape memory alloy and its functional stability could be proven for the first time. “An improved compatibility of the high- and low-temperature crystal lattice results in improved functional stability” summarized Robert Zarnetta , going on to explain “that this relation could only be discovered by bridging the fields of combinatorial SMA thin film and the conventional bulk materials development”.

Collaborative Research Center and Research Department

The results were conducted, based on the work within the collaborative research center “SFB 459”, at the Chairs “Materials for Microtechnology” (Prof. Dr.-Ing. Alfred Ludwig, Institute for Materials) and “Materials Science and Engineering” (Prof. Dr.-Ing. Gunther Eggeler, Institute for Materials) and in cooperation with the Materials Research Department at the RUB.

Title record

Zarnetta, R., Takahashi, R., Young, M. L., Savan, A., Furuya, Y., Thienhaus, S., Maass, B., Rahim, M., Frenzel, J., Brunken, H., Chu, Y. S., Srivastava, V., James, R. D., Takeuchi, I., Eggeler, G. & Ludwig, A.: Identification of quaternary shape memory alloys with near zero thermal hysteresis and unprecedented functional stability, In: Advanced Functional Materials 2010, 20, 1917-1923), doi: 10.1002/adfm.200902336

Further information

Prof. Dr.-Ing. Alfred Ludwig, Materials for Microtechnology, Institute for Materials, Faculty of Mechanical Engineering, Ruhr-Universität Bochum, Tel. 0234/32-27492, alfred.ludwig@rub.de

http://www.rub.de/wdm and http://www.rub.de/sfb459

Robert Zarnetta, Materials Research Department, Ruhr-Universität Bochum, Tel. 0234/32-25929, robert.zarnetta@rub.de

Dr. Josef König | idw
Further information:
http://www.rd.rub.de/is3
http://www.rub.de/sfb459

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>