Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016

Toward the Realization of Deep-Level Bioimaging without Using Toxic Elements or UV Light

Researchers in Japan developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using this new material.


Figure: Images of NIH3T3 cells observed under a differential interference microscope (left) and a confocal fluorescence microscope (right). A superimposition of the two images is shown in the middle.

Copyright : NIMS

A research group at the National Institute for Materials Science (NIMS) International Center for Materials Nanoarchitectonics (MANA), led by MANA Principal Investigator Françoise Winnik, a MANA postdoc researcher Sourov Chandra, a research group led by MANA Independent Scientist Naoto Shirahata, and a research group consisting of Professor Yoshinobu Baba and Assistant Professor Takao Yasui, Graduate School of Engineering, Nagoya University, jointly developed a silicon fluorescent material that is very low in toxicity and high in luminescence efficiency, compared to conventional materials. Under near-infrared radiation (NIR) at wavelengths of 650 to 1,000 nm—the range known as the “biological optical window”—that is capable of passing through living systems, the joint group succeeded in bioimaging using the new material for the first time in the world.

Fluorescence bioimaging refers to the visualization of cells and other biological tissues that are invisible to the naked eye, by marking them visible with a fluorescent material. The technique enables in vivo observation of the distribution and behavior of living cells in real time. Through application of this technique, it may be feasible to observe the behavior of cells and biomolecules linked to pathogenesis and identify the mechanism of disease development. Many of the conventional fluorescent materials emit light when they react to ultraviolet (UV) light or visible light. However, because biological components such as hemoglobin and body fluids absorb these types of light, they are not applicable for deep-level observation of biological matters. Some fluorescent materials are reactive to light at wavelengths that fall under a “biological optical window,” but most materials have poor luminescent efficiency, and few others with high luminescent efficiency contain toxic elements such as lead and mercury.

Using silicon-based particles, the joint group successfully developed a fluorescent material capable of efficiently producing luminescence by reacting to incoming light at wavelengths comparable to a “biological optical window.” The use of silicon-based fluorescent materials in bioimaging had been previously studied, and some problems were found such as that they need UV light to exert excitation and efficient luminescence, and that they have low light-emitting efficiencies. In view of these issues, the joint research group developed a new core-double shell structure in which crystalline silicon nanoparticles, serving as cores, are coated with hydrocarbon groups and a surfactant. Two‐photon excitation fluorescence imaging demonstrated that crystalline silicon exhibited efficient photoexcitation when absorbing NIR, and that the hydrocarbon groups in the coating increased emission quantum yield. Furthermore, the surfactant coating made the fluorescent material water-soluble. As a result, the new material enabled efficient marking of target biomolecules, and subsequent fluorescent bioimaging of the marked targets using a NIR range of radiation that passes through living systems.

In future studies, we aim to accomplish fluorescent bioimaging at a deep level using the new silicon fluorescent material we developed in this study.

A part of this study was conducted in connection with the “Molecule & Material Synthesis Platform” project at Nagoya University under the “Nanotechnology Platform Japan” program organized by the Ministry of Education, Culture, Sports, Science and Technology.

This study was published in the online version of Nanoscale on April 13, 2016.

Associated links

Journal information

“Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning”; Sourov Chandra, Batu Ghosh, Grégory Beaune, Usharani Nagarajan, Takao Yasui, Jin Nakamura, Tohru Tsuruoka, Yoshinobu Baba, Naoto Shirahata and Françoise M. Winnik; Nanoscale, 2016,8, 9009-9019, DOI: 10.1039/C6NR01437B

Mikiko Tanifuji | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A robot and software make it easier to create advanced materials
06.12.2019 | Rutgers University

nachricht First field measurements of laughing gas isotopes
05.12.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>