Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitive grip

23.03.2018

Bionics for gripping: Nature provided key inspiration in the development the new shape-adaptive forceps. The tips gently adapt to the surface, distribute pressure evenly and ensure that surfaces are not damaged. An ideal tool for biologic research and surgery.

Dr. Oliver Schwarz at Fraunhofer IPA explains: »Traditional forceps always exert the greatest pressure at the tip. For biologists and medical professionals this is a common problem: When handling delicate tissue, the cell bond can be damaged by the high pressure.« Together with his team, the biotechnologist has developed »shape-adaptive forceps« to reduce pressure.


Functional pattern of the shape-adaptive tweezers holds straws.

Fraunhofer IPA/Rainer Bez


As can be seen on the right, objects can be held between the jaws of the tweezers without experiencing major forces (unlike the metal tweezers on the left).

Fraunhofer IPA/Rainer Bez

Fish, or more specifically their tail fins, were the inspiration for the new tool. They have radial structures linked by transverse elastic connective tissue. This structure means that the so-called rays (the bony spines) of the fin bend in the opposite direction to the water pressure and improve the fish’s propulsion.

This fin-ray effect, discovered in 1997, was used by Fraunhofer IPA researchers to develop medical equipment. Dr. Schwarz expands on this: »Our bionic forceps consist of longitudinal and transverse struts, like a fish tail, which are connected elastically and structured in such a way that they react to pressure and work against it.«

The pressure cannot be too great for this: The researcher carefully grips a straw that is lying on the table with his forceps. Both tips, which were perfectly straight just before, adapt immediately to the surface of the straw. »This shape-adaptive behavior means that pressure is no longer exerted only at one point, instead it is distributed over the entire area of contact,« the researcher explains as he lifts the straw off the table with the forceps. The straw only bends slightly into an oval, but is not squashed.

The secret lies in the design. After months of fiddly work, Fraunhofer IPA had developed different models on a computer. Dr. Schwarz explains: »Our aim was to design the forceps in such a way that they would sit well in the hand, guarantee the desired adaptation to the surface and also be able to be produced cost-effectively and sustainably.«

The most successful model – made out of polyamide, a synthetic polymer created using castor oil that is suitable for medical applications – can be produced by 3D printing or injection molding. The first prototypes are already being used in practical tests by surgeons.

Medicine is just one of many application areas: the new shape-adaptive forceps can be used anywhere that delicate parts need to be attached or transported, such as biologic research or electronic component manufacturing.

Press communication
Ramona Hönl | Tel.: +49 711 970-1638 | ramona.hoenl@ipa.fraunhofer.de

Specialist contact
Dr. rer. nat. Oliver Schwarz | Telephone +49 711 970-3754 | oliver.schwarz@ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>