Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing the big picture in photosynthetic light harvesting


Berkeley Lab researchers create first multiple antennae model of photosystem II

To understand what goes on inside a beehive you can't just study the activity of a single bee. Likewise, to understand the photosynthetic light-harvesting that takes place inside the chloroplast of a leaf, you can't just study the activity of a single antenna protein. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory and the University of California (UC) Berkeley have created the first computational model that simulates the light-harvesting activity of the thousands of antenna proteins that would be interacting in the chloroplast of an actual leaf. The results from this model point the way to improving the yields of food and fuel crops, and developing artificial photosynthesis technologies for next generation solar energy systems.

This first computational model to simulate multiple antenna proteins, photosystem II (PSII) complexes are shown as teal pills, and light harvesting complexes (LHC II) are shown as green circles.

(Courtesy of Berkeley Lab)

The new model simulates light-harvesting across several hundred nanometers of a thylakoid membrane, which is the membrane within a chloroplast that harbors photosystem II (PSII), a complex of antennae made up of mostly of chlorophyll-containing proteins. The antennae in PSII gain "excitation" energy when they absorb sunlight and, through quantum mechanical effects, almost instantaneously transport this extra energy to reaction centers for conversion into chemical energy. Previous models of PSII simulated energy transport within a single antenna protein.

"Our model, which looked at some 10,000 proteins containing about 100,000 chlorophyll molecules, is the first to simulate a region of the PSII membrane large enough to represent behavior in a chloroplast while respecting and using both the quantum dynamics and the spatial structure of the membrane's components," says chemist Graham Fleming, who oversaw the development of this model. Fleming is a world authority on the quantum dynamics of photosynthesis. He holds appointments with Berkeley Lab, the University of California (UC) Berkeley, and the Kavli Energy NanoScience Institute at Berkeley.

"We use insights from structural biology, advanced spectroscopy and theory to reproduce observed phenomena spanning from one nanometer to hundreds of nanometers, and from ten femtoseconds to one nanosecond," Fleming says. "This enables us to explain the mechanisms underlying the high quantum efficiency of PSII light harvesting in ideal conditions for the first time."

Fleming is the corresponding author of a paper describing this research in the Proceedings of the National Academy of Sciences. The paper is titled "Multiscale model of photosystem II light harvesting in the thylakoid membrane of plants." Co-authors are Kapil Amarnath, Doran Bennett and Anna Schneider.

The ability of green plants to thrive in sunlight stems in part from the flexibility that PSII displays in harvesting solar energy. At low levels of light, through quantum processes that have been modeled by Fleming and coworkers, a photon of sunlight can be utilized for creation of chemical energy with more than 90-percent probability. Thanks to a protective mechanism known as "energy-dependent quenching," PSII is able to ensure that a plant absorbs only the amount of solar energy it needs while excess energy that might damage the plant is safely dissipated.

Earlier work by Fleming and his research group revealed a molecular mechanism by which PSII is able to act as a sort of photosynthetic "dimmer switch" to regulate the amount of solar energy transported to the reaction center. However, this work was done for a single PSII antenna and did not reflect how these mechanisms might affect the transport of energy across assemblies of antennae, which in turn would affect the photochemical yield in the reaction centers of a functional thylakoid membrane.

"Our new model shows that excitation energy moves diffusively through the antennae with a diffusion length of 50 nanometers until it reaches a reaction center," Fleming says. "The diffusion length of this excitation energy determines PSII's high quantum efficiency in ideal conditions, and how that efficiency is altered by the membrane morphology and the closure of reaction centers. Ultimately, this means that the diffusion length of this excitation energy determines the photosynthetic efficiency of the host plant."

Given that the ability of PSII to regulate the amount of solar energy being converted to chemical energy is essential for optimal plant fitness in natural sunlight, understanding this ability and learning to manipulate it is a prerequisite for systematically engineering the light-harvesting apparatus in crops. It should also be highly useful for designing artificial materials with the same flexible properties.

"Our next step is to learn now to model a system of PSII's complexity over timescales ranging from femtoseconds to minutes, and lengthscales ranging from nanometers to micrometers," Fleming says.


This research was supported by the DOE Office of Science. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility hosted at Berkeley Lab.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit

Lynn Yarris | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>