Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists outsmart nature by building super liquid-repellent dry adhesives

29.04.2020

A specific fibril tip shape design is the key to achieving elastic dry fibril adhesives with super liquid repellency. This new bioinspired material opens up many possibilities for use, as it prevents any form of liquid droplet or layer from hindering or degrading its adhesion.

Scientists at the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart have developed a bioinspired reversible dry adhesive material that is able to repel all liquids, regardless of their surface tension.


Figure 1: Bioinspired liquid super-repellent dry adhesives

MPI für Intelligente Systeme


A specific fibril tip shape design is the key to achieving elastic dry fibril adhesives with super liquid repellency.

MPI für Intelligente Systeme

While dry adhesives have been actively studied and applied for two decades, a super liquid-repellent dry adhesive has never been achieved before.

“Our material effectively repels not only water, but any liquid. Oils, for example, which easily wet surfaces due to their low surface tension, would normally spread on and between the fibrils – the fine hairs – causing them to clump together and lose adhesion. But because of the specific tip structure we have created, our fibrils can fend off all liquids, including oils,” Ville Liimatainen explains, highlighting the key feature of the adhesive.

Liimatainen is a postdoctoral researcher in the Physical Intelligence Department at the MPI-IS and lead author of the publication “Liquid‐Superrepellent Bioinspired Fibrillar Adhesives”, which was recently published in Advanced Materials.

The senior author is Metin Sitti, a Director at MPI-IS and head of the Physical Intelligence Department. Sitti is a pioneer in the research field of gecko-inspired dry adhesives. He is also the founder of nanoGriptech Inc., a start-up that commercialized several nature-inspired dry adhesives.

Most of the Physical Intelligence department’s research is inspired by nature and the blueprints it provides, and this project was no exception. Ville Liimatainen, Dirk Drotlef, Donghoon Son, and Metin Sitti took inspiration from the tiny fibrils on a gecko’s footpads.

Each one is covered with hundreds of thousands of tiny mushroom-shaped knobs, which allow the animal to effortlessly climb up practically any surface. Synthetic mimics of these fibrillar adhesive systems have been studied for decades, with performance reaching and sometimes even surpassing that of geckos.

Dry adhesives do not require any chemicals or glue to make them stick to almost any surface. Moreover, they are reusable, soft, bendable, and stretchable. However, they fail when they get wet, as do gecko footpads: faced with wet conditions, the gecko’s ability to adhere to slippery surfaces decreases dramatically.

Scientists outsmart nature

By changing the shape of the fibril tips, the scientists were able to outsmart nature and make their dry adhesive super-repellent to water and other liquids.

“To give you examples: Gecko-inspired dry adhesives would now be able to stick to any wet surface without any adhesion loss, and a climbing robot using bioinspired dry adhesives would be able to climb on surfaces with any liquids. Alternately, a robot hand equipped with a layer of such an adhesive would be able to pick-and-place any object covered in liquid,” Sitti adds.

As seen in figure 1c, the arrows represent the vectors of the surface tension. Even if a liquid can spread to the bottom corners of the fibril tips, surface tension will have an upward- pointing component, as indicated by the arrows.

This force supports the liquid, which then cannot slip down between the fibrils. “This is all thanks to the overhanging T-shape geometry of the fibril tip, which can stop even ultralow-surface-tension liquids,” Liimatainen explains.

Each fibril is 40 micrometers in height and 10 micrometers thick at the narrowest point just underneath the cap, which has a diameter of 28 micrometers. This size ratio combined with the special fibril tip shape and the use of stretchable, scratch-resistant soft silicone elastomer as the building material enables durable dry adhesives with strong adhesion and extreme liquid repellency.

Originalpublikation:

https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202000497

Weitere Informationen:

http://www.is.mpg.de/news

Linda Behringer | Max-Planck-Institut für Intelligente Systeme

More articles from Materials Sciences:

nachricht Unusual electron sharing found in cool crystal
31.07.2020 | Nagoya University

nachricht TU Graz Researchers synthesize nanoparticles tailored for special applications
30.07.2020 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>