Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists join international research team in discovery that could improve HD TV

01.02.2018

Scientists at Queen's University Belfast have been working as part of an international team to develop a new process, which could lead to a new generation of high-definition (HD), paving the way for brighter, lighter and more energy efficient TVs and smart devices.

The Queen's scientists have been working alongside a team of experts from Switzerland (ETH Zurich, Empa--Swiss Federal Laboratories for Materials Science and Technology), USA (Florida State University) and Taiwan (National Taiwan University of Science and Technology, National Synchrotron Radiation Research Centre).


Scientists come up with new process that could improve HD TV.

Credit: Queen's University Belfast

The team's findings, which have been reported in Science Advances, reveal that when quantum dots - tiny flecks of semiconductor that are prized for their crisp colours - are clustered together they are more fluorescent, providing a wide variety of colours.

Through the project, quantum dots containing methylammonium lead bromine (MAPbBr3) were created. The experts found that by creating lamellar structures - fine layers, alternating between different materials - the human eye's response to the visible light was very high. This means that the material re-emitted a lot of the light that it absorbed and very bright colours were created. The team have named this process aggregation-induced emission (AIE).

The Queen's University team is led by Dr Elton Santos from the School of Mathematics and Physics.

Dr Santos said: "Through this research discovery, we anticipate that the number of colours a display can present can be increased more than 50 per cent. In practice, this means that we may have a new type of "high-definition" because of the number of colour combinations that the material can display. Therefore, the next HD generation is just as close as three to four years away."

Professor Chih-Jen Shih who created the quantum dots and led the investigation at ETH Zurich, commented: "Normally the quantum yield, which determines the brightness, degrades significantly as quantum dots aggregate, forming crystalline solids. However, our investigations show that brighter levels are achievable because of the new photonic process that we have discovered and have named aggregation-induced emission (AIE)."

Dr Santos said: "This AIE process can revolutionise the quality of the colours in TVs because the base colours are red, blue and green. Using AIE we can create the brightest green colour ever achieved by any nanomaterial. Once this bright green is integrated with the other two colours, the number of new colour combinations could exceed what is currently possible. The latest QD technology, which is just about to be released to market, allows for one billion colours, which is 64 times more than the average TV. However, what using the process we have discovered, we can actually make this even better."

Professor Shangchao Lin, who led the research at Florida State University, said: "Our findings also show that the perovskite nanocrystals emit light extremely quickly and are very energy efficient. This means reduction of electricity consumption, and consistent colour expression throughout a long lifespan."

The researchers are currently looking for similar processes for blue and red colours so that they can create the "holy-grail" of screen displays, which would replicate all of the colours that can be captured by the human eye.

In terms of timescales, Professor Shih says the research is almost ready for commercialisation: "The remaining tasks will be to enhance the stability of these compounds and to ensure that they can endure high temperatures, humidity and electrical energy being applied."

Media Contact

Emma Gallagher
emma.gallagher@qub.ac.uk
289-097-5384

 @QueensUBelfast

http://www.qub.ac.uk 

Emma Gallagher | EurekAlert!

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>