Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists have a new way to gauge the growth of nanowires

19.03.2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than a human hair.

These nanowires, made of indium gallium arsenide, could be useful for a wide range of applications in a field scientists have termed optoelectronics, which encompasses devices that work by converting light energy into electrical impulses. Fiber optic relays are a good example.


Argonne and Brookhaven researchers observed two kinds of defects forming in individual nanowires, depicted here. These nanowires are smaller in diameter than a human hair.

Credit: Megan Hill/Northwestern University

"We just have to get close enough to hit somewhere on the target; we don't have to split the proverbial arrow."  -- Stephan Hruskewycz, Argonne materials scientist

The effectiveness of these devices, however, can be affected by tiny defects in their components. These defects, which can change both the optical and electronic properties of these materials, interest scientists who seek to tailor them to boost the functionality of future optoelectronics, including materials that will be able to manipulate quantum information.

In the study, the team, which also involved collaborators from Northwestern University and two European universities, observed two kinds of defects in a single nanowire. The first kind of defect, caused by strain, affects the entire nanowire, preventing it from growing perfectly straight. The second kind of defect, called a stacking fault, occurs close to the atomic level, as individual planes of atoms are laid down to lengthen the nanowire.

"To visualize the difference between stacking faults and strain, you can think of shuffling a deck of cards," said Argonne materials scientist Stephan Hruszkewycz, a study author. "A stacking fault occurs when a card from the deck is shuffled imperfectly -- as if two cards come from the right hand before one can come from the left."

Strain, Hruszkewycz explained, "looks as if a tower of decks of cards were tilted in a certain direction instead of standing perfectly straight."

Because stacking faults and strain occur at such different scales, understanding how they interact to change a nanowire's characteristics requires scientists to use sophisticated imaging technology and complex mathematical algorithms.

By using a technique called Bragg ptychography to observe the defects, the Argonne researchers created a method they could use to see the nanowire within its operating environment.

"We've developed a technique that allows us to investigate the actual local structure in the material," Hruszkewycz said. "This will allow us to make valuable comparisons to theories that people have come up with that describe how these defects could affect not only the nanowire, but the entire device of which it is a part."

"The method provides a missing link between nanoscale defect structure and variations in strain on longer length scales that will enable us to better control the optoelectronic properties of nanowires," said Northwestern University materials science professor Lincoln Lauhon.

In Bragg ptychography, researchers shine an X-ray beam at a series of overlapping spots all over the material, like a stagehand slowly moving a spotlight across a stage. The information produced by the atoms' scattering of the X-rays gives researchers a three-dimensional view of the material at close to atomic resolution. The researchers used the technique at Brookhaven's Hard X-ray Nanoprobe at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science User Facility.

"Beamline 3-ID is capable of producing a coherent nanofocused beam, so it is well suited for reconstructing images through techniques like Bragg ptychography," said Brookhaven lead beamline scientist Yong Chu, an author of the study. "This collaboration has been extremely valuable for advancing Bragg ptychography capabilities at NSLS-II, as well as our understanding of nanowires."

Scientists have recently improved the algorithms that generate this picture, an improvement that has dramatically changed the X-ray information collection process. Instead of having to use a spot-by-spot grid-based approach as done in earlier ptychographic studies, Hruszkewycz and his collaborators could move their X-ray beam around more freely, collecting useful information from across their sample. "It's like instead of doing a very simple and repetitive line dance, all we have to do is make sure that we place our feet on each part of the dance floor at one point or another," he said.

This flexibility has another advantage: it allows researchers to illuminate smaller features using a smaller spot size -- enabled in large part by X-ray zone plates fabricated by Michael Wojcik, a physicist at Argonne's Advanced Photon Source. These zone plates are a diffractive optic that consists of several radially symmetric rings, called zones, which alternate between opaque and transparent. They are spaced so that light transmitted by the transparent zones constructively interferes at the desired focus.

"When we're trying to hit our target, we don't have to be Robin Hood," Hruszkewycz said. "We just have to get close enough to hit somewhere on the target; we don't have to split the proverbial arrow."

###

An article based on the study, "Measuring three-dimensional strain and structural defects in a single InGaAs nanowire using coherent X-ray multiangle Bragg projection ptychography," appeared in the January 18 online edition of Nano Letters.

The work was performed in part at Argonne's Center for Nanoscale Materials, a DOE Office of Science User Facility. The U.S.-based part of the research was funded by the U.S. Department of Energy's Office of Science and the National Science Foundation.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the  Office of Science website.

Media Contact

Jared Sagoff
jsagoff@anl.gov
630-252-5549

 @argonne

http://www.anl.gov 

Jared Sagoff | EurekAlert!

Further reports about: X-ray X-ray beam nanowire optoelectronics ptychography

More articles from Materials Sciences:

nachricht Scientists create a nanomaterial that is both twisted and untwisted at the same time
16.09.2019 | University of Bath

nachricht New metamaterial morphs into new shapes, taking on new properties
12.09.2019 | California Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>