Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists get to the heart of fool's gold as a solar material

19.11.2014

As the installation of photovoltaic solar cells continues to accelerate, scientists are looking for inexpensive materials beyond the traditional silicon that can efficiently convert sunlight into electricity.

Theoretically, iron pyrite -- a cheap compound that makes a common mineral known as fool's gold -- could do the job, but when it works at all, the conversion efficiency remains frustratingly low. Now, a University of Wisconsin-Madison research team explains why that is, in a discovery that suggests how improvements in this promising material could lead to inexpensive yet efficient solar cells.


This crystal of iron pyrite shows the characteristic cubic crystals of 'fool's gold.' A new study led by Song Jin at the University of Wisconsin-Madison identifies defects in pyrite's crystal structure as a critical obstacle to building commercial solar cells from the cheap and abundant iron pyrite material.

Credit: University of Wisconsin-Madison Geology Museum

"We think we now understand why pyrite hasn't worked," says chemistry Professor Song Jin, "and that provides the hope, based on our understanding, for figuring out how to make it work. This could be even more difficult, but exciting and rewarding."

Although most commercial photovoltaic cells nowadays are based on silicon, the light-collecting film must be relatively thick and pure, which makes the production process costly and energy-intensive, says Jin.

A film of iron pyrite -- a compound built of iron and sulfur atoms -- could be 1,000 times thinner than silicon and still efficiently absorb sunlight.

Like silicon, iron and sulfur are common elements in the Earth's crust, so solar cells made of iron pyrite could have a significant material cost advantage in large scale deployment. In fact, previous research that balanced factors like theoretical efficiency, materials availability, and extraction cost put iron pyrite at the top of the list of candidates for low-cost and large-scale photovoltaic materials.

In the current online edition of the Journal of the American Chemical Society, Jin and first author Miguel Cabán-Acevedo, a chemistry Ph.D. student, together with other scientists at UW-Madison, explain how they identified defects in the body of the iron pyrite material as the source of inefficiency. The research was supported by the U.S. Department of Energy.

In a photovoltaic material, absorption of sunlight creates oppositely charged carriers, called electrons and holes, that must be separated in order for sunlight to be converted to electricity. The efficiency of a photovoltaic solar cell can be judged by three parameters, Jin says, and the solar cells made of pyrite were almost totally deficient in one: voltage.

Without a voltage, a cell cannot produce any power, he points out. Yet based on its essential parameters, iron pyrite should be a reasonably good solar material. "We wanted to know, why is the photovoltage so low," Jin says.

"We did a lot of different measurements and studies to look comprehensively at the problem," says Cabán-Acevedo, "and we think we have fully and definitively shown why pyrite, as a solar material, has not been efficient."

In exploring why pyrite was practically unable to make photovoltaic electricity, many researchers have looked at the surface of the crystals, but Cabán-Acevedo and Jin also looked inside. "If you think of this as a body, many have focused on the skin, but we also looked at the heart," says Cabán-Acevedo, "and we think the major problems lie inside, although there are also problems on the skin."

The internal problems, called "bulk defects," occur when a sulfur atom is missing from its expected place in the crystal structure. These defects are intrinsic to the material properties of iron pyrite and are present even in ultra-pure crystals. Their presence in large numbers eventually leads to the lack of photovoltage for solar cells based on iron pyrite crystals.

Science advances by comprehending causes, Jin says. "Our message is that now we understand why pyrite does not work. If you don't understand something, you must try to solve it by trial and error. Once you understand it, you can use rational design to overcome the obstacle. You don't have to stumble around in the dark."

CONTACT: Song Jin, 608-262-1562, jin@chem.wisc.edu (prefers email for first contact)

--David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Song Jin | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>