Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016

Mysterious quantum properties in material crafted at Berkeley Lab point to new applications in electronics.

Researchers have created an exotic 3-D racetrack for electrons in ultrathin slices of a nanomaterial they fabricated at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab)


Credit: Nature, 10.1038/nature18276

This image, produced by a scanning electron microscope, shows three sheets of a crystal material called cadmium arsenide. The finely polished rectangular sheets (purple) were sliced from the same crystal in varying thicknesses. They measure about 4 microns (thousandths of a millimeter) tall by 10 microns wide.

The international team of scientists from Berkeley Lab, UC Berkeley, and Germany observed, for the first time, a unique behavior in which electrons rotate around one surface, then through the bulk of the material to its opposite surface and back.

The possibility of developing so-called “topological matter” that can carry electrical current on its surface without loss at room temperature has attracted significant interest in the research community. The ultimate goal is to approach the lossless conduction of another class of materials, known as superconductors, but without the need for the extreme, freezing temperatures that superconductors require.

... more about:
»Electrons »cadmium »magnetic field

“Microchips lose so much energy through heat dissipation that it’s a limiting factor,” said James Analytis, a staff scientist at Berkeley Lab and assistant professor of physics at UC Berkeley who led the study, published in Nature. “The smaller they become, the more they heat up.”

The studied material, an inorganic semimetal called cadmium arsenide (Cd3As2), exhibits quantum properties — which are not explained by the classical laws of physics — that offer a new approach to reducing waste energy in microchips. In 2014, scientists discovered that cadmium arsenide shares some electronic properties with graphene, a single-atom-thick material also eyed for next-generation computer components, but in a 3-D form.

“What’s exciting about these phenomena is that, in theory, they are not affected by temperature, and the fact they exist in three dimensions possibly makes fabrication of new devices easier,” Analytis said.

The cadmium arsenide samples displayed a quantum property known as “chirality” that couples an electron’s fundamental property of spin to its momentum, essentially giving it left- or right-handed traits. The experiment provided a first step toward the goal of using chirality for transporting charge and energy through a material without loss.

In the experiment, researchers manufactured and studied how electric current travels in slices of a cadmium arsenic crystal just 150 nanometers thick, or about 600 times smaller than the width of a human hair, when subjected to a high magnetic field.

The crystal samples were crafted at Berkeley Lab’s Molecular Foundry, which has a focus in building and studying nanoscale materials, and their 3-D structure was detailed using X-rays at Berkeley Lab’s Advanced Light Source.

Many mysteries remain about the exotic properties of the studied material, and as a next step researchers are seeking other fabrication techniques to build a similar material with built-in magnetic properties, so no external magnetic field is required.

“This isn’t the right material for an application, but it tells us we’re on the right track,” Analytis said.

If researchers are successful in their modifications, such a material could conceivably be used for constructing interconnects between multiple computer chips, for example, for next-generation computers that rely on an electron’s spin to process data (known as “spintronics”), and for building thermoelectric devices that convert waste heat to electric current.

It wasn’t clear at first whether the research team would even be able to manufacture a pure enough sample at the tiny scale required to carry out the experiment, Analytis said.

“We wanted to measure the surface states of electrons in the material. But this 3-D material also conducts electricity in the bulk — it’s central region — as well as at the surface,” he said. As a result, when you measure the electric current, the signal is swamped by what is going on in the bulk so you never see the surface contribution.”

So they shrunk the sample from millionths of a meter to the nanoscale to give them more surface area and ensure that the surface signal would be the dominant one in an experiment.

“We decided to do this by shaping samples into smaller structures using a focused beam of charged particles,” he said. “But this ion beam is known to be a rough way to treat the material—it is typically intrinsically damaging to surfaces, and we thought it was never going to work.”

But Philip J.W. Moll, now at the Max Planck Institute for Chemical Physics of Solids in Germany, found a way to minimize this damage and provide finely polished surfaces in the tiny slices using tools at the Molecular Foundry. “Cutting something and at the same time not damaging it are natural opposites. Our team had to push the ion beam fabrication to its limits of low energy and tight beam focus to make this possible.”

When researchers applied an electric current to the samples, they found that electrons race around in circles similar to how they orbit around an atom’s nucleus, but their path passes through both the surface and the bulk of the material.

The applied magnetic field pushes the electrons around the surface. When they reach the same energy and momentum of the bulk electrons, they get pulled by the chirality of the bulk and pushed through to the other surface, repeating this oddly twisting path until they are scattered by material defects.

The experiment represents a successful marriage of theoretical approaches with the right materials and techniques, Analytis said.

“This had been theorized by Andrew Potter on our team and his co-workers, and our experiment marks the first time it was observed,” Analytis said. “It is very unusual—there is no analogous phenomena in any other system. The two surfaces of the material ‘talk’ to each other over large distances due to their chiral nature.”

“We had predicted this behavior as a way to measure the unusual properties expected in these materials, and it was very exciting to see these ideas come to life in real experimental systems,” said Potter, an assistant physics professor at the University of Texas at Austin. “Philip and collaborators made some great innovations to produce extremely thin and high-quality samples, which really made these observations possible for the first time.”

Researchers also learned that disorder in the patterning of the material’s crystal surface doesn’t seem to affect the behavior of electrons there, though disorder in the central material does have an impact on whether the electrons move across the material from one surface to the other.

The motion of the electrons exhibits a dual handedness, with some electrons traveling around the material in one direction and others looping around in an opposite direction.

Researchers are now building on this work in designing new materials for ongoing studies, Analytis said. “We are using techniques normally restricted to the semiconductor industry to make prototype devices from quantum materials.”

Berkeley Lab’s Molecular Foundry and Advanced Light Source are both DOE Office of Science User Facilities.

This work was supported by the Department of Energy’s Office of Basic Energy Sciences, the Gordon and Betty Moore Foundation, and the Swiss Federal Institute of Technology in Zurich (ETH Zurich),

###

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

SEE ORIGINAL STUDY

Glenn Roberts | newswise

Further reports about: Electrons cadmium magnetic field

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>