Scientists Discover Networks of Metal Nanoparticles Are Culprits in Alloy Corrosion

Oxide scales develop on the outer surface of alloys at high temperatures creating a protective barrier that keeps destructive carbon-bearing molecules from slipping into the alloy. The diffusion of carbon into oxide scales should be negligible, but studies have shown that carbon can sneak through the oxide line of defense leading to brittleness and corrosion.

“The United States loses four percent of the gross national product due to alloy corrosion,” Argonne Distinguished Fellow Ken Natesan said. “A network of continuous metal nanoparticles allow the carbon to dissolve and diffuse through the protective oxide scales without the need of a crack or a pore.”

It was commonly believed that carbon-containing molecules escaped into cracks or pores in the oxide scales, but using three separate techniques — nanobeam x-ray analysis at the Advanced Photon Source, magnetic force microscopy at the Center for Nanoscale Materials and scanning electron microscopy at the Electron Microscopy Center — Natesan, along with Argonne scientists Zuotao Zeng, Seth Darling and Zhonghou Cai, discovered networks of iron and nickel nanoparticles embedded within the oxide scales.

Carbon can easily diffuse through the metals and create a path for carbon atom transport which does not involve defects in the scale.

“By examining the oxide scale, we find the metal nanoparticles,” Zeng said. “If they are eliminated we can create a more corrosion-resistant and longer lasting alloy.”

Based on the study, ANL has developed laboratory size batches of materials that exhibit as much as ten times longer life than commercial alloys with similar chromium contents, Natesan said. At present, 50-lb batches of the alloys have been cast successfully by an alloy manufacturer and will be commercialized in due course. The ANL-developed alloys are of considerable interest to the chemical, petrochemical, and refining industry.

The findings might also have broad influence on not only metal dusting and carburization, but also in other research areas such as alloy development and surface coatings for high-temperature fuel cell applications.

Funding for this research was provided by the U.S. Department of Energy, Office of Industrial Technologies. The Argonne scientific user facilities such as the Advanced Photon Source, Electron Microscopy Center and Center for Nanoscale Materials are supported by the U.S. Department of Energy, Office of Science.

A paper based on this work has been published recently in Nature Materials.

Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Media Contact

Brock Cooper Newswise Science News

More Information:

http://www.anl.gov

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors