Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new materials that move in response to light

24.07.2018

Elastomeric composites can flex, grip, release, or rotate when exposed to lasers, diffuse light or sunlight

Researchers at Tufts University School of Engineering have developed magnetic elastomeric composites that move in different ways when exposed to light, raising the possibility that these materials could enable a wide range of products that perform simple to complex movements, from tiny engines and valves to solar arrays that bend toward the sunlight. The research is described in an article published today in the Proceedings of the National Academy of Sciences.


A film deflects from a magnetic field when exposed to light.

Credit: SilkLab, Tufts University

In biology, there are many examples where light induces movement or change - think of flowers and leaves turning toward sunlight. The light actuated materials created in this study are based on the principle of the Curie temperature - the temperature above which certain materials will change their magnetic properties.

By heating and cooling a magnetic material, one can turn its magnetism off and on. Biopolymers and elastomers doped with ferromagnetic CrO2 will heat up when exposed to laser or sunlight, temporarily losing their magnetic properties until they cool down again. The basic movements of the material, shaped into films, sponges, and hydrogels, are induced by nearby permanent or electromagnets and can exhibit as bending, twisting, and expansion.

"We could combine these simple movements into more complex motion, like crawling, walking, or swimming," said Fiorenzo Omenetto, Ph.D., corresponding author of the study and the Frank C. Doble Professor of Engineering in the School of Engineering at Tufts. "And these movements can be triggered and controlled wirelessly, using light."

Omenetto's team demonstrated some of these complex movements by constructing soft grippers that capture and release objects in response to light illumination. "One of the advantages of these materials is that we can selectively activate portions of a structure and control them using localized or focused light," said Meng Li, the first author of the paper, "And unlike other light actuated materials based on liquid crystals, these materials can be fashioned to move either toward, or away from the direction of the light. All of these features add up to the ability to make objects large and small with complex, coordinated movements."

To demonstrate this versatility, the researchers constructed a simple "Curie engine". A light actuated film was shaped into a ring and mounted on a needle post. Placed near a permanent magnet, when a laser was focused onto a fixed spot on the ring, it locally demagnetizes that portion of the ring, creating an unbalanced net force that causes the ring to turn. As it turns, the demagnetized spot regains its magnetization and a new spot is illuminated and demagnetized, causing the engine to continuously rotate.

Materials used to create the light actuated materials include polydimethylsoloxane (PDMS), which is a widely used transparent elastomer often shaped into flexible films, and silk fibroin, which is a versatile biocompatible material with excellent optical properties that can be shaped into a wide range of forms - from films to gels, threads, blocks and sponges.

"With additional material patterning, light patterning and magnetic field control, we could theoretically achieve even more complicated and fine-tuned movements, such as folding and unfolding, microfluidic valve switching, micro and nano-sized engines and more," said Omenetto.

###

Other authors on the paper were: Graduate students Meng Li, Yu Wang, Arin Naidu, Carlos Lopez Rodrigues, Bradley Napier and Wenyi Li of the Tufts University SilkLab and the Department of Biomedical Engineering. Aiping Chen and Scott Crooker, Ph.D. of the National High Magnetic Field Laboratory in Los Alamos, NM, helped with measuring and characterizing the magnetic properties of the materials.

This work was supported by the National Science Foundation (#1541959).

Li M, Wang Y, Chen A, Naidu A, Napier BS, Li W, Lopez Rodriguez C, Crooker SA, Omenetto FG. "Flexible magnetic composites for light-controlled actuation and interfaces" PNAS, DOI: 10.1073/pnas.1805832115

About Tufts University/strong>

Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Media Contact

Mike Silver
mike.silver@tufts.edu
617-627-0545

 @TuftsUniversity

http://www.tufts.edu 

Mike Silver | EurekAlert!
Further information:
http://dx.doi.org/10.1073/pnas.1805832115

More articles from Materials Sciences:

nachricht Pressure tuned magnetism paves the way for novel electronic devices
18.12.2018 | Bar-Ilan University

nachricht Researchers observe charge-stripe crystal phase in an insulating cuprate
18.12.2018 | Boston College

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>