Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules, particularly water, that have an affinity for the charged atoms. But these molecular processes have traditionally been difficult to model--and therefore to understand--using computers or artificial structures.


In this simulation, a biological membrane (gray) with an ion channel (center) is immersed in a solution of water and ions. This cross section of a simulation "box" shows the electric potential, the externally supplied "force" that drives ions through the channel. A dazzling pattern emerges in this potential due to the presence of the channel -- the colors show the lines of equal potential. The slowly decaying nature of this pattern in space makes simulations difficult. The golden aspect ratio -- the chosen ratio of height to width of this box -- allows for small simulations to effectively capture the effect of the large spatial dimensions of the experiment.

Credit: NIST

Now, researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated that nanometer-scale pores etched into layers of graphene--atomically thin sheets of carbon renowned for their strength and conductivity--can provide a simple model for the complex operation of ion channels.

This model allows scientists to measure a host of properties related to ion transport. In addition, graphene nanopores may ultimately provide scientists with efficient mechanical filters suitable for such processes as removing salt from ocean water and identifying defective DNA in genetic material.

NIST scientist Michael Zwolak, along with Subin Sahu (who is jointly affiliated with NIST, the University of Maryland NanoCenter and Oregon State University), has also discovered a way to simulate aspects of ion channel behavior while accounting for such computationally intensive details as molecular-scale variations in the size or shape of the channel.

To squeeze through a cell's ion channel, which is an assemblage of proteins with a pore only a few atoms wide, ions must lose some or all of the water molecules bound to them. However, the amount of energy required to do so is often prohibitive, so ions need some extra help. They get that assistance from the ion channel itself, which is lined with molecules that have opposite charges to certain ions, and thus helps to attract them. Moreover, the arrangement of these charged molecules provides a better fit for some ions versus others, creating a highly selective filter. For instance, certain ion channels are lined with negatively charged molecules that are distributed in such a way that they can easily accommodate potassium ions but not sodium ions.

It's the selectivity of ion channels that scientists want to understand better, both to learn how biological systems function and because the operation of these channels may suggest a promising way to engineer non-biological filters for a host of industrial uses.

By turning to a simpler system--graphene nanopores--Zwolak, Sahu, and Massimiliano Di Ventra of the University of California, San Diego, simulated conditions that resemble the activity of actual ion channels. For example, the team's simulations demonstrated for the first time that nanopores could be made to permit only some ions to travel through them by changing the diameter of the nanopores etched in a single sheet of graphene or by adding additional sheets. Unlike biological ion channels, however, this selectivity comes from the removal of water molecules only, a process known as dehydration.

Graphene nanopores will allow this dehydration-only selectivity to be measured under a variety of conditions, another new feat. The researchers reported their findings in recent issues of Nano Letters and Nanoscale.

In two preprints (https://arxiv.org/abs/1708.03327 and https://arxiv.org/abs/1711.00472), Zwolak and Sahu address some of the complexity in simulating ions' constriction and transport through the nanopore channels. When theorists simulate a process, they choose a certain size "box" in which they perform those simulations. The box might be bigger or smaller, depending on the breadth and detail of the calculation. The researchers showed that if the dimensions of the simulation volume are chosen such that the ratio of the width of the volume to its height has a particular numerical value, then the simulation can simultaneously capture the influence of the surrounding ionic solution and such thorny details as nanoscale fluctuations in the diameter of the pores or the presence of charged chemical groups. This discovery--which the team calls "the golden aspect ratio" for simulations--will greatly simplify calculations and lead to a better understanding of the operation of ion channels, Zwolak said.

###

Papers: S. Sahu, M. Di Ventra, and M. Zwolak. Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores. Nano Letters. Published online 5 July 2017. DOI: 10.1021/acs.nanolett.7b01399

S. Sahu and M. Zwolak. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores. Nanoscale. Published online 25 July 2017. DOI: 10.1039/C7NR03838K

Media Contact

Ben Stein
bstein@nist.gov
301-975-2763

 @usnistgov

http://www.nist.gov 

Ben Stein | EurekAlert!
Further information:
https://www.nist.gov/news-events/news/2017/12/scientists-channel-graphene-understand-filtration-and-ion-transport-cells

More articles from Materials Sciences:

nachricht Nanocrystal 'factory' could revolutionize quantum dot manufacturing
18.03.2019 | North Carolina State University

nachricht Design and validation of world-class multilayered thermal emitter using machine learning
15.03.2019 | National Institute for Materials Science, Japan

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>