Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving fuel while plowing

26.07.2011
Less friction, less power, less fuel – plowshares coated with diamond-like carbon (DLC) slide through the soil like a hot knife through butter. As a result, the tractors pulling them need less power and fuel. In some tests the power required has been reduced by more than 30 percent.

Extremely hard, diamond-like carbon coatings are used to protect hard disks in computers and ensure that sliding bearings remain smooth. In the future they could help farmers to save fuel while plowing and make it easier to till the ground. Farmers in Germany consume nearly a billion liters of fuel every year to work their land.

Around 50 per cent of the energy used when plowing or harrowing is lost as a result of friction between the plowshare and the soil. To change this, scientists at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg and their partners in the RemBob project are working on DLC-coated plowshares. They have already been able to reduce friction by half. The power required by the tractor has also been reduced, by more than 30 per cent in some tests.

For farmers, the smoothly cutting plowshares mean either a time gain because they can use wider equipment or lower costs for fuel, machinery and maintenance. The tractors can be smaller or can operate in partial load, with longer repair and maintenance intervals. “From the environmental point of view it would be better for the tractors to be smaller,” says physicist and trained fruit farmer Martin Hörner from Fraunhofer IWM. They would not only need less fuel but would also be lighter. Lighter machines mean less soil compaction, and the looser the soil, the less power is needed to work it.

The quality of the soil would also be better. In highly compacted ground there are hardly any worms and other small creatures which help to turn the soil and enrich it with nutrients. Compacted soils are less able to absorb water and dry out more quickly. “In Germany we are relatively advanced as far as protecting soil resources is concerned, but even in this country more soil is lost by compaction and erosion than is created by natural processes,” explains Hörner.

A further advantage of DLC coatings on groundworking equipment is the protection they provide against corrosion and wear. Plowshares have to be hard and sturdy but also resilient, so that they do not break if they hit a rock. High-durability steels are used, but they suffer visibly if they are used for a prolonged length of time in the ground. “A tine on a circular harrow can lose 50 per cent of its mass through wear every season,” states Hörner. But soil, sand and stones wear down conventional coatings within a very short time. This is why plowshares have not been coated up to now. DLC coatings, however, can withstand the extreme stresses and strains.

The problem is that the tough steel on the groundworking equipment deforms too easily and is therefore unsuitable as a substrate for the much more rigid diamond-like coating – it would quickly spall. The project partners are therefore testing plowshares made of different materials, including nitriding steel, glass-fiber-reinforced plastic and tungsten carbide, out in the field. The next project goal is to plow at least 20 kilometers of ground before the coating fails. “If we achieve that, the wear-free plowshare will be within touching distance,” affirms Hörner.

Martin Hörner | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/19/saving-fuel.jsp

Further reports about: DLC coatings IWM Saving diamond-like carbon coatings

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>