Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saarbrücken mathematicians study the cooling of heavy plate from Dillingen

17.05.2018

Already a model for success: In addition to the recently extended partnership with the Materials Science Department at the University of Saarland, AG der Dillinger Hüttenwerke (Dillinger) is supporting another ambitious research project: The Department of Numerical Mathematics at Saarland University is studying the modelling of the cooling process of premium heavy plate at Dillinger. The focus of activity for Mathematics Professor Thomas Schuster and his PhD student Dimitri Rothermel is on the cooling from rolling heat. This is a decisive factor in adjusting the material properties of the steel and therefore in meeting the diverse requirements customers have for the material.

Therefore mathematical models are required to meet increasing customer requirements and to further automate production. Dillinger is supporting the research with a total of 300,000 euros.


Still mill at Dillinger

Dillinger


Professor Thomas Schuster

Universität des Saarlandes

The project started in 201, the official start of the second project phase was on 1 April 2018. “A few years ago I was not even aware of how important cooling is for the properties of steel,” recalls Thomas Schuster, professor of numerical mathematics at Saarland University, who started the first phase of the joint project “Inverse Modelling and Simulation of Laminar Cooling Processes” with Dillinger three years ago.

He quickly realized the cooling process is anything but trivial and is not just about cooling the steel so that it can be better stored. “The requirements placed on steel vary greatly from customer to customer,” Prof. Schuster says. Doctoral candidate Dimitri Rothermel offers an example: “A customer might want to build a bridge, so the steel needs to have high toughness and weldability. For another type of steel, such as for the manufacture of an excavator, strength may be more important.”

Dr. Bernd Münnich, Chief Technology Officer at Dillinger, emphasizes the importance of an optimal cooling process for Europe's leading heavy plate manufacturer: “The demands, properties and combinations of properties placed on our steels are becoming more complex all the time. Intelligent cooling can reduce the use of expensive alloying agents – and is therefore also more economical while offering high quality assurance.” Münnich therefore sees a better understanding of the cooling process as an innovation boost for Dillinger.

Up to now, the experts at Dillinger have used a very extensive database – a kind of library – to control the cooling system. It stores many settings of the cooling system that are used for cooling, depending on customer specifications. This library contains process parameters that, however, do not always exactly match the prevailing conditions in the cooling system. If a mathematical model can now be developed based on production and test data that reflects the experience of the experts, the cooling process could be tailored much more precisely to customer specifications.

In a first step, a mathematical model in the form of a nonlinear heat conduction equation was developed between 2015 and March 2018. With this equation it is possible to describe the cooling process mathematically along the entire cooling line, depending on the speed and position in the cooling line.

In the second phase now getting started, Thomas Schuster, Dimitri Rothermel and the experts from Dillinger want to find a mathematical basis with which the cooling can be controlled so precisely – depending on the water load and the speed at which the cooling plate passes through – that the desired product properties can be adjusted much more precisely.

Dillinger is funding the project, which will run until September 2019, with a total of 300,000 euros. “That is quite a large sum for mathematics,” Thomas Schuster says. “Unlike materials scientists, for example, we do not need large-scale equipment that can cost six or seven-figure amounts. The most expensive and valuable thing in mathematics is staff positions,” he says.

This investment will more than pay for itself if the mathematicians can complete the project successfully. In December 2017, Dillinger also announced it will continue its partnership for another three years with the Department of Materials Science and Engineering at Saarland University and the Steinbeis Forschungszentrum Material Engineering Center Saarland (MECS).

More information:

www.num.uni-sb.de/schuster
www.dillinger.de

Press Pictures: www.uni-saarland.de/pressefotos

Questions will be answered:

Prof. Dr. Thomas Schuster
Department of Numerical Mathematics at the University of Saarland
Tel.: +49 (0)681 302-57425
Email: thomas.schuster@num.uni-sb.de
AG der Dillinger Hüttenwerke
Ute Engel
Tel.: +49 (0)6831 47 3011
Email: ute.engel@stahl-holding-saar.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

Further reports about: Cooling Materials Science cooling process cooling system

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>