Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice U. study sheds light on -- and through -- 2D materials

25.09.2018

High-performance computing helps to survey optical qualities of atom-thick materials for optoelectronics

The ability of metallic or semiconducting materials to absorb, reflect and act upon light is of primary importance to scientists developing optoelectronics - electronic devices that interact with light to perform tasks. Rice University scientists have now produced a method to determine the properties of atom-thin materials that promise to refine the modulation and manipulation of light.


Rice University researchers modeled two-dimensional materials to quantify how they react to light. They calculated how the atom-thick materials in single or stacked layers would transmit, absorb and reflect light. The graphs above measure the maximum absorbance of several of the 55 materials tested.

Credit: Yakobson Research Group/Rice University

Two-dimensional materials have been a hot research topic since graphene, a flat lattice of carbon atoms, was identified in 2001. Since then, scientists have raced to develop, either in theory or in the lab, novel 2D materials with a range of optical, electronic and physical properties.

Until now, they have lacked a comprehensive guide to the optical properties those materials offer as ultrathin reflectors, transmitters or absorbers.

The Rice lab of materials theorist Boris Yakobson took up the challenge. Yakobson and his co-authors, graduate student and lead author Sunny Gupta, postdoctoral researcher Sharmila Shirodkar and research scientist Alex Kutana, used state-of-the-art theoretical methods to compute the maximum optical properties of 55 2D materials.

"The important thing now that we understand the protocol is that we can use it to analyze any 2D material," Gupta said. "This is a big computational effort, but now it's possible to evaluate any material at a deeper quantitative level."

Their work, which appears this month in the American Chemical Society journal ACS Nano, details the monolayers' transmittance, absorbance and reflectance, properties they collectively dubbed TAR. At the nanoscale, light can interact with materials in unique ways, prompting electron-photon interactions or triggering plasmons that absorb light at one frequency and emit it in another.

Manipulating 2D materials lets researchers design ever smaller devices like sensors or light-driven circuits. But first it helps to know how sensitive a material is to a particular wavelength of light, from infrared to visible colors to ultraviolet.

"Generally, the common wisdom is that 2D materials are so thin that they should appear to be essentially transparent, with negligible reflection and absorption," Yakobson said. "Surprisingly, we found that each material has an expressive optical signature, with a large portion of light of a particular color (wavelength) being absorbed or reflected."

The co-authors anticipate photodetecting and modulating devices and polarizing filters are possible applications for 2D materials that have directionally dependent optical properties. "Multilayer coatings could provide good protection from radiation or light, like from lasers," Shirodkar said. "In the latter case, heterostructured (multilayered) films -- coatings of complementary materials -- may be needed. Greater intensities of light could produce nonlinear effects, and accounting for those will certainly require further research."

The researchers modeled 2D stacks as well as single layers. "Stacks can broaden the spectral range or bring about new functionality, like polarizers," Kutana said. "We can think about using stacked heterostructure patterns to store information or even for cryptography."

Among their results, the researchers verified that stacks of graphene and borophene are highly reflective of mid-infrared light. Their most striking discovery was that a material made of more than 100 single-atom layers of boron -- which would still be only about 40 nanometers thick -- would reflect more than 99 percent of light from the infrared to ultraviolet, outperforming doped graphene and bulk silver.

There's a side benefit that fits with Yakobson's artistic sensibility as well. "Now that we know the optical properties of all these materials - the colors they reflect and transmit when hit with light - we can think about making Tiffany-style stained-glass windows on the nanoscale," he said. "That would be fantastic!"

###

Editor's note: A link to a high-resolution image for download appears at the end of this release.

David Ruth 713-348-6327?david@rice.edu

Mike Williams 713-348-6728?mikewilliams@rice.edu

The work was supported by the U.S. Army Research Office and the Robert Welch Foundation. Computing resources were provided by the National Science Foundation-supported DAVinCI cluster at Rice, administered by the Center for Research Computing and procured in partnership with Rice's Ken Kennedy Institute for Information Technology, the Department of Defense High Performance Computing Modernization Program and the Department of Energy Office of Science's National Energy Research Scientific Computing Center.

Read the abstract at https://pubs.acs.org/doi/10.1021/acsnano.8b03754.

This news release can be found online at http://news.rice.edu/2018/09/24/rice-u-study-sheds-light-on-and-through-2d-materials/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Yakobson Research Group: https://biygroup.blogs.rice.edu

Rice Department of Materials Science and NanoEngineering: https://engineering.rice.edu

George R. Brown School of Engineering: https://msne.rice.edu

Image for download:

http://news.rice.edu/files/2018/09/0924_2D-1a-WEB-231u7gy.jpeg

Rice University researchers modeled two-dimensional materials to quantify how they react to light. They calculated how the atom-thick materials in single or stacked layers would transmit, absorb and reflect light. The graphs above measure the maximum absorbance of several of the 55 materials tested. (Credit: Yakobson Research Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

Mike Williams
mikewilliams@rice.edu
713-348-6728

 @RiceUNews

http://news.rice.edu 

Mike Williams | EurekAlert!
Further information:
http://news.rice.edu/2018/09/24/rice-u-study-sheds-light-on-and-through-2d-materials/
http://dx.doi.org/10.1021/acsnano.8b03754

More articles from Materials Sciences:

nachricht New opportunities in additive manufacturing presented
14.11.2019 | Fraunhofer IFAM Dresden

nachricht Theoretical tubulanes inspire ultrahard polymers
13.11.2019 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

New opportunities in additive manufacturing presented

14.11.2019 | Materials Sciences

Massive photons in an artificial magnetic field

14.11.2019 | Physics and Astronomy

Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)

14.11.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>