Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice's 'quantum critical' theory gets experimental boost

12.01.2012
Study represents step toward unified theory for quantum phase transformation

New evidence this week supports a theory developed five years ago at Rice University to explain the electrical properties of several classes of materials -- including unconventional superconductors -- that have long vexed physicists.

The findings in this week's issue of Nature Materials uphold a theory first offered in 2006 by physicist Qimiao Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. They represent an important step toward the ultimate goal of creating a unified theoretical description of the quantum behavior of high-temperature superconductors and related materials.

"We now have a materials-based global phase diagram for heavy-fermion systems -- a kind of road map that helps relate the predicted behavior of several different classes of materials," Si said. "This is an important step on the road to a unified theory."

High-temperature superconductivity is one of the greatest unsolved mysteries of modern physics. In the mid-1980s, experimental physicists discovered several compounds that could conduct electricity with zero resistance. The effect happens only when the materials are very cold, but still far above the temperatures required for the conventional superconductors that were discovered and explained earlier in the 20th century.

In searching for a way to explain high-temperature superconductivity, physicists discovered that the phenomenon was one of a larger family of behaviors called "correlated electron effects."

In correlated electron processes, the electrons in a superconductor behave in lockstep, as if they were a single entity rather than a large collection of individuals. These processes bring about tipping points called "quantum critical points" at which materials change phases. These phase changes are similar to thermodynamic phase changes that occur when ice melts or water boils, except they are governed by quantum mechanics.

Materials at the border of magnetism and superconductivity -- including heavy-fermion metals and high-temperature superconductors -- are the prototype systems for quantum critical points.

In 2001, Si and colleagues proposed what has now become the dominant theory to explain correlated electron effects in heavy-fermion systems. Their "local quantum critical" theory concluded that both magnetism and charged electron excitations play a role in bringing about quantum critical points.

Experiments over the past decade have provided overwhelming evidence for the role of both effects. In addition, experiments have shown that quantum critical points fall into different classes for different types of materials, including several nonsuperconductors.

"In light of the experimental evidence, an important question arose as to whether a unifying principle might exist that could explain the behavior of all the classes of quantum critical points that had been observed in heavy-fermion materials," Si said.

In 2006, Si put forward a new theory aimed at doing just that. Experiments two years ago confirmed that the theoretical global phase diagram could explain the quantum critical behavior of YRS -- composites of ytterbium, rhodium and silicon that are among the most-studied quantum critical materials.

In the new Nature Materials paper, a group led by experimental physicist Silke Paschen of Vienna University of Technology in Vienna examined a new material made of cerium, palladium and silicon (CPS). Both YRS and CPS are heavy-fermion compounds; however, YRS is a composite of stacked two-dimensional layers, and CPS has a three-dimensional crystalline structure.

"In YRS, the collapse of charged electronic excitations occurs at the onset of magnetic order," Paschen said. "In CPS, we established a similar collapse of the electronic excitations but inside an ordered phase."

To explain the difference between the observations in CPS and YRS, Si and co-author Rong Yu, a Rice postdoctoral researcher, invoked the effect of dimensionality.

"In systems like YRS, reduced dimensionality enhances the quantum fluctuations between the electrons, and that enhancement influences their collective behavior," Yu said. "In the three-dimensional material, we found that the quantum fluctuations were reduced, and this affected the quantum critical point and the correlated behavior in a way that was predicted by theory."

Si said the linkage between the quantum critical points of CPS and YRS is important for the ultimate question of how to classify and unify quantum criticality.

"Our study not only highlights a rich variety of quantum critical points but also indicates an underlying universality," he said.

Si said it is important to test the theory's ability to correctly predict the behavior of even more materials, and his group is working with Paschen and other experimentalists via the International Collaborative Center on Quantum Matter to carry out those tests.

Co-authors on the Nature Materials paper include J. Custers, K.-A. Lorenser, M. Müller, A. Prokofiev, A. Sidorenkio and H. Winkler, all of Vienna University of Technology; A.M. Strydom of the University of Johannesburg in South Africa; and Y. Shimura and T. Sakakibara, both of the University of Tokyo. The research was supported by the European Research Council, the Austrian Science Foundation, the National Science Foundation and the Welch Foundation.

A high-resolution image is available for download at: http://www.media.rice.edu/images/media/NewsRels/0104_lorenzer_sidorenko2.JPG

CAPTION: Physics graduate students Karl-Anton Lorenzer (left) and Andrey Sidorenko adjust equipment at Vienna University of Technology. CREDIT: F. Aigner/TU Wien

A high-resolution image is available for download at: http://www.media.rice.edu/images/media/NewsRels/0104_winkler_sidorenko.JPG

CAPTION: Vienna University of Technology graduate students Hannes Winkler (left) and Andrey Sidorenko are co-authors of a new paper that sheds light on "correlated electron effects" in heavy fermion materials. CREDIT: F. Aigner/TU Wien

The Nature Materials paper is available at: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3214.html

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://www.rice.edu/nationalmedia/Rice.pdf

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>