Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers transform slow emitters into fast light sources

23.10.2015

Researchers from Brown University, in collaboration with colleagues from Harvard, have developed a new way to control light from phosphorescent emitters at very high speeds. The technique provides a new approach to modulation that could be useful in all kinds of silicon-based nanoscale devices, including computer chips and other optoelectronic components.

"Our results demonstrate relatively fast modulation from fundamentally slow phosphorescent light emitters," said Rashid Zia, associate professor of engineering and physics at Brown and senior author of a new paper describing the work. "We think this could help make phosphors useful in a variety of new systems and settings."


Phosphors are efficient light emitters but they're not optimal for high-speed communications because they turn on and off slowly. Researchers from Brown and Harvard have now found a way to modulate light from phosphor emitters three orders of magnitude faster using phase-change materials (VO2, in this case), which could make phosphors useful in a range of new optoelectronic applications.

Credit: Zia Lab / Brown University

The paper is published today in Nature Communications.

Phosphors are common light emitters used in light bulbs, LEDs and elsewhere. They are extremely efficient because much of the energy pumped into them is converted to light as opposed to heat.

But they have a slow optical lifetime, meaning it takes a relatively long time for them to return to the ground state after being excited. As a result, phosphors can't be turned on and off very quickly. Glow-in-the-dark toys, for example, take advantage of this property.

That property is bad, however, for optical modulation, a process that often involves flipping the light on and off to encode information. Because of their slow lifetimes, phosphors have traditionally been a non-starter for applications that require high-speed modulation.

But in this latest work, Zia and collaborators, including researchers from Shriram Ramanathan's group at Harvard University, took a different approach to modulation.

"Instead of changing how much light is coming out, which can only be done slowly in phosphor emitters, we came up with a system that changes another quality of that light, namely the color or spectrum of light emission, by rapidly changing the environment around the emitter," Zia said.

The work was led by Sebastien Cueff, a postdoctoral researcher in Zia's lab. Cueff started with an emitter made of erbium ions, an important phosphor that is widely used in fiber-optic telecommunication networks. He combined that with a material called vanadium dioxide (VO2). VO2 is a phase-change material that, when pumped with energy, changes very quickly from a transparent insulating state to a reflective metallic state.

This change in reflectivity, in turn, switches how nearby erbium ions emit light. As the VO2 changes phase, the erbium emissions go from being generated mostly by magnetic dipole transitions (the rotational torque push and pull of magnetic forces), to being generated mostly by electric dipole transitions (the linear push and pull of electric forces). Those two emission pathways have distinct spectra, and the modulation back and forth between the two can be used as a means to encode information.

The researchers showed that this direct modulation of light emission could be done as quickly as the VO2 phase could be changed, which is much faster than the speed at which erbium can be turned on and off. The test system used in these initial experiments showed that the system could be switched three orders of magnitude faster than the optical lifetime of erbium.

"Phosphorescent emitters have been considered impractical for high speed applications because of their intrinsically long lifetimes," Zia said. "Our results provide a simple way to circumvent this limitation and modulate their emission at high speeds."

And that could enable the use of phosphors in new applications. One example could be optical communications networks on computer chips.

Prototype on-chip networks have used semiconductor lasers as light emitters. They can modulate very quickly, but they have downsides. Semiconductors can't be grown directly on a silicon chip, so fabrication can be difficult. Using indirect means of modulation -- interferometers, for example -- makes for bulky systems that take up a lot of real estate on a chip. What's more, semiconductor lasers are not particularly efficient. They produce a lot of heat along with light, which is a problem on a silicon chip.

Erbium and other phosphors, on the other hand, can be deposited directly on silicon, making fabrication easier. And phosphors are highly efficient, so heat is less of a concern. There's still more work to be done to get such a system up to a speed that would be useful on a chip, but Zia and his colleagues think it's possible.

In this initial experiment, the researchers used a laser to zap the VO2 and cause it to change phase. A faster means of changing the VO2 phase -- perhaps using electricity instead of a laser -- could make the system much faster still.

Zia and his group plan to continue to refine the technique, but they describe this first set of experiments as an important proof of concept. "We ... hope that the device and concept presented here will engage both academic and industrial researchers working on optoelectronics and nanophotonics," the researchers write.

###

Other authors on the paper were Dongfang Li (Brown), You Zhou (Harvard), Franklin J. Wong (Harvard), Jonathan A. Kurvits (Brown), and Shriram Ramanathan (Harvard). The work was supported by the Air Force Office of Scientific Research (FA9550-10-1-0026 and FA9550-12-1-0189), Army Research Office (W911NF-14-1-0669), Department of Education (P200A090076) and National Science Foundation (EECS-0846466 and EECS-1408009).

Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!

More articles from Materials Sciences:

nachricht Machine-learning predicted a superhard and high-energy-density tungsten nitride
18.07.2018 | Science China Press

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>