Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from Saarbruecken arrange nanoparticles like "giant atoms"

18.06.2012
Scientists at INM – Leibniz Institute for New Materials found out that certain nanoparticles assemble into groups as if they were atoms. Like the atoms of metals or noble gases, they form specific structures depending on their number.
Through their findings, the researchers are now able to make precisely defined structures from nanoparticles. Normally, nanoparticles form rather disordered, often loose and fuzzy clusters. The results were recently published in the scientific magazine "Nano Letters".

The researchers assume that this unexpected behavior derives from the smallness of the nanoparticles. "We assume that the nanoparticles with a core diameter of only six nanometers show a behavior similar to atoms: They move very fast, collide with each other and attract each other", explains Tobias Kraus, head of the Structure Formation Group. Therefore, they can assemble almost as orderly as atoms.
Depending on the number of nanoparticles, the scientists can now predict which three-dimensional lattice are formed by the particles. "Imagine that clusters with 20 particles look like a sphere, whereas 40 particles arrange rather like a cube and 60 particles form a pyramid", explains Kraus, who holds degrees in materials science and chemical engineering. It is possible to produce specific shapes by defining the quantity of the nanoparticles in the production process. "Since nanoparticles arranged as a sphere have different properties than nanoparticles arranged as a cube, we can influence properties by the number of the particles", says Kraus. "A rather elongated cluster may not fit through the pores of a filter, for example, although it contains more particles than a spherical cluster."

The scientists use a well-established principle to force the nanoparticles into this highly ordered structure. To begin with, all gold nanoparticles must be of the same size, which is achieved in a classic preparation procedure: The researchers dissolve little bars of gold in a concentrated acid, combine the dissolved gold with organic molecules and add surface-active substances. When heating this mixture, the scientists obtain nanoparticles with a diameter of six millionths of a millimeter. The nanoparticles swim in oil, which is then dispersed into droplets. Each droplet contains several nanoparticles. "As these droplets evaporate, the space for the nanoparticles is increasingly reduced so that they assemble in an orderly manner and form the ordered clusters", says Kraus.

In the future, the group will integrate various particles into the clusters, each of them having a different task. This may be a first step to building microscopic machinery from particles.
Original publication: Johann Lacava, Philip Born, Tobias, Kraus, "Nanoparticle Clusters with Lennard-Jones Geometries", Nano Letters, DOI: 10.1021/nl3013659

Contact:
Dr. Tobias Kraus
Structure Formation Group
INM – Leibniz Institute for New Materials
Phone: +49 681 9300 389
Email: tobias.kraus@inm-gmbh.de

INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

INM – Leibniz Institute for New Materials, situated in Saarbruecken/Germany, is an internationally leading centre for materials research. It is a scientific partner to national and international institutes and a provider of research and development for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 180 collaborators. Its main research fields are Chemical Nanotechnology, Interface Materials, and Materials in Biology.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.wgl.de/

More articles from Materials Sciences:

nachricht Synthesis of helical ladder polymers
21.05.2019 | Kanazawa University

nachricht Ultra-thin superlattices from gold nanoparticles for nanophotonics
21.05.2019 | Heinrich-Heine University Duesseldorf

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>