Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers observe charge-stripe crystal phase in an insulating cuprate

18.12.2018

Heating the surface of cuprate high-temperature superconductor yields insulating state

Researchers from Boston College and Brookhaven National Laboratory have succeeded in modifying a cuprate high-temperature superconductor material into an insulating state, where they found an exotic liquid crystal phase.


Scanning tunneling microscopy was used to analyze a cuperate high-temperature superconductor modified into an insulating state by a team of researchers from Boston College and Brookhaven National Laboratory.

Credit: Nature Materials

The observation of a so-called "charge-stripe" crystal phase was the first of its kind in the cuprate, part of a class of materials referred to as Mott insulators, the team reports today in the journal Nature Materials.

The absence of free charge carriers denotes the material as "undoped." The process of doping introduces charge carriers and theorists have held that when doped, a cuprate would see the charge carriers order and form liquid crystal phases marked by periodic "charge-stripe" patterns. Such patterns have thus far only been experimentally observed in the superconducting state, said lead author Boston College Assistant Professor of Physics Iilja Zeljkovic.

Zeljkovic and the team, which included members of his lab, Boston College Professor of Physics Ziqiang Wang, and researchers from Brookhaven National Laboratory in New York, used a new methodology to induce the charge ordering in the insulating state, they report in the article, titled "Charge-Stripe Crystal Phase in an Insulating Cuprate."

The team applied a method of surface annealing, a head treatment used to alter the physical and chemical properties of metals, Zeljkovic said. The process allowed the team to extend the accessible doping range in the cuprate, composed of bismuth, strontium, calcium, copper and oxygen.

Accessing new regions of the material, the team achieved a "lightly doped, charge-transfer insulator state," Zeljkovic said.

The team analyzed the insulating state at the atomic level using scanning tunneling microscopy and spectroscopy at liquid helium temperatures.

"Our measurements reveal the emergence of a unidirectional charge-stripe order with a wave-length of exactly 4 atomic lattice constants," Zeljkovic said. "Our data also proves that lightly-doped cuprates have a tendency to form stripes over the bidirectional 'checkerboard' order, thus resolving the long-standing controversy in the field that could not be settled using the existing data on higher-doped samples."

Zeljkovic said he and his colleagues would like to next explore the relationship of the observed charge ordered phase and the charge ordered phases observed in the superconducting state.

The discovery raises the question of whether the "spin" of charge carriers also orders into periodic patterns, forming so-called spin-density waves, Zeljkovic said.

Media Contact

Ed Hayward
ed.hayward@bc.edu
617-552-4826

 @BostonCollege

http://www.bc.edu 

Ed Hayward | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41563-018-0243-x

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>