Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers invent process to make sustainable rubber, plastics

25.04.2017

Findings by scientists could transform the multi-billion-dollar plastics and rubber industries

Synthetic rubber and plastics - used for manufacturing tires, toys and myriad other products - are produced from butadiene, a molecule traditionally made from petroleum or natural gas. But those manmade materials could get a lot greener soon, thanks to the ingenuity of a team of scientists from three U.S. research universities.


'Our team combined a catalyst we recently discovered with new and exciting chemistry to find the first high-yield, low-cost method of manufacturing butadiene,' says Dionisios Vlachos, Director of the University of Delaware's Catalysis Center for Energy Innovation.

Credit: University of Delaware/ Jeffrey Chase

The scientific team -- from the University of Delaware, the University of Minnesota and the University of Massachusetts - has invented a process to make butadiene from renewable sources like trees, grasses and corn.

The findings, now online, will be published in the American Chemical Society's ACS Sustainable Chemistry and Engineering, a leading journal in green chemistry and engineering. The study's authors are all affiliated with the Catalysis Center for Energy Innovation (CCEI) based at the University of Delaware. CCEI is an Energy Frontier Research Center funded by the U.S. Department of Energy.

... more about:
»catalysts »phosphorous »plastic »rubber

"Our team combined a catalyst we recently discovered with new and exciting chemistry to find the first high-yield, low-cost method of manufacturing butadiene," says CCEI Director Dionisios Vlachos, the Allan and Myra Ferguson Professor of Chemical and Biomolecular Engineering at UD and a co-author of the study. "This research could transform the multi-billion-dollar plastics and rubber industries."

Butadiene is the chief chemical component in a broad range of materials found throughout society. When this four-carbon molecule undergoes a chemical reaction to form long chains called polymers, styrene-butadiene rubber (SBR) is formed, which is used to make abrasive-resistant automobile tires. When blended to make nitrile butadiene rubber (NBR), it becomes the key component in hoses, seals and the rubber gloves ubiquitous to medical settings.

In the world of plastics, butadiene is the chief chemical component in acrylonitrile-butadiene-styrene (ABS), a hard plastic that can be molded into rigid shapes. Tough ABS plastic is used to make video game consoles, automotive parts, sporting goods, medical devices and interlocking plastic toy bricks, among other products.

The past 10 years have seen a shift toward an academic research focus on renewable chemicals and butadiene, in particular, due to its importance in commercial products, Vlachos says.

"Our team's success came from our philosophy that connects research in novel catalytic materials with a new approach to the chemistry," says Vlachos. "This is a great example where the research team was greater than the sum of its parts."

Novel chemistry in three steps

The novel chemistry included a three-step process starting from biomass-derived sugars. Using technology developed within CCEI, the team converted sugars to a ring compound called furfural. In the second step, the team further processed furfural to another ring compound called tetrahydrofuran (THF).

It was in the third step that the team found the breakthrough chemical manufacturing technology. Using a new catalyst called "phosphorous all-silica zeolite," developed within the center, the team was able to convert THF to butadiene with high yield (greater than 95 percent).

The team called this new, selective reaction "dehydra-decyclization" to represent its capability for simultaneously removing water and opening ring compounds at once.

"We discovered that phosphorus-based catalysts supported by silica and zeolites exhibit high selectivity for manufacturing chemicals like butadiene," says Prof. Wei Fan of the University of Massachusetts Amherst. "When comparing their capability for controlling certain industrial chemistry uses with that of other catalysts, the phosphorous materials appear truly unique and nicely complement the set of catalysts we have been developing at CCEI."

The invention of renewable rubber is part of CCEI's larger mission. Initiated in 2009, CCEI has focused on transformational catalytic technology to produce renewable chemicals and biofuels from natural biomass sources.

"This newer technology significantly expands the slate of molecules we can make from lignocellulose," says Prof. Paul Dauenhauer of the University of Minnesota, who is co-director of CCEI and a co-author of the study.

###

Additional co-authors include Prof. Michael Tsapatsis, postdoctoral researchers Dae Sung Park, Charles Spanjers, Limin Ren and Omar Abdelrahman, and graduate student Katherine Vinter, all from the University of Minnesota, and graduate student Hong Je Cho from the University of Massachusetts.

To read the full research paper, titled "Biomass-Derived Butadiene by Dehydra-Decyclization of Tetrahydrofuran," visit the ACS Sustainable Chemistry and Engineering website.

Media Contact

Peter Bothum
pbothum@udel.edu
302-831-1418

 @UDResearch

http://www.udel.edu 

Peter Bothum | EurekAlert!

Further reports about: catalysts phosphorous plastic rubber

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>