Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers generate electricity from low-cost biomaterial

05.12.2017

Irish researchers squeeze low-cost electricity from sustainable biomaterial

Mobile phone speakers and motion detectors in cars and video games may soon be powered by electricity generated from low cost and sustainable biomaterials, according to research carried out at University of Limerick (UL), Ireland.


Mobile phone speakers and motion detectors in cars and video games may soon be powered by electricity generated from low cost and sustainable biomaterials, according to research carried out at University of Limerick (UL), Ireland. Scientists at UL's Bernal Institute have discovered that the biomolecule glycine, when tapped or squeezed, can generate enough electricity to power electrical devices in an economically viable and environmentally sustainable way. The research was published on Dec. 4, 2017 in leading international journal Nature Materials. Pictured is Sarah Guerin, Science Foundation Ireland funded post-graduate researcher at the Bernal Institute, UL.

Credit: Sean Curtin TrueMedia

Usage Restrictions: This image may only be used in connection with this press release and when above caption and credit are included.

Scientists at UL's Bernal Institute have discovered that the biomolecule glycine, when tapped or squeezed, can generate enough electricity to power electrical devices in an economically viable and environmentally sustainable way. The research was published on December 4, 2017 in leading international journal Nature Materials.

Glycine is the simplest amino acid. It occurs in practically all agro and forestry residues. It can be produced at less than one per cent of the cost of currently used piezoelectric materials.

Piezoelectric materials generate electricity in response to pressure, and vice versa. They are widely used in cars, phones, and remote controls for games consoles. Unlike glycine, these materials are normally synthetic and often contain toxic elements such as lead or lithium.

"It is really exciting that such a tiny molecule can generate so much electricity," said lead author Sarah Guerin, a post-graduate student at the Department of Physics and the Bernal Institute, UL.

"We used computer models to predict the electrical response of a wide range of crystals and the glycine number was off the charts. We then grew long, narrow crystals of glycine in alcohol," she added, "and we produced electricity just by tapping them."

Sarah's PhD supervisor Dr Damien Thompson, adds, "The predictive models we are developing can save years of trial-and-error lab work. The modelling data tells us what kinds of crystals to grow and where best to cut and press those crystals to generate electricity."

Co-author and Science Foundation Ireland (SFI) Centre for Medical Devices (CURAM) investigator Professor Tofail Syed said: "We also have a pending patent that translates our findings to applications such as biodegradable power generation, devices detecting diseases inside of the body and physiologically controlled drug pumps".

Previously, Bernal scientists discovered piezoelectricity in the globular protein lysozyme, found in tears, egg-white and saliva, and hydroxyapatite, a component of bone.

"The current finding extends the technology towards pragmatic, low-cost, renewable sources for electricity generation," according to Professor Luuk van der Wielen, Director of the Bernal Institute and Bernal Professor of Biosystems Engineering and Design. "The finding translates the earlier Bernal scientists' world-leading contribution in bio-piezoelectricity towards a large-scale and affordable application potential."

Professor Edmond Magner, Dean of Science and Engineering at UL, said: "UL's Department of Physics and Bernal Institute researchers continue to pioneer the use of biological crystals for electrical applications. This work places them at the forefront in the development of bio-piezoelectric devices".

###

The full paper, Control of Piezoelectricity in Amino Acids by Supramolecular Packing, by Sarah Guerin, Aimee Stapleton, Drahomir Chovan, Rabah Mouras, Matthew Gleeson, Cian McKeown, Mohamed R Noor, Christophe Silien, Fernando M F Rhen, Andrei L Kholkin, Ning Liu, Tewfik Soulimane, Syed A M Tofail, and Damien Thompson, is published in Nature Materials, December 4, 2017.

For further information, photographs or to arrange an interview, please contact:

Nicola Corless
Communications Officer
University of Limerick
Nicola.Corless@ul.ie

Notes to the editor:

Funding:

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI), and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073.

About Sarah Guerin:

Sarah Guerin, from Tralee, County Kerry, Ireland, is a final year PhD student at the University of Limerick. Her research uses a combination of quantum mechanical calculations and advanced characterisation techniques to develop the next generation of single crystal piezoelectric technologies. In August 2015 she graduated with a first class honours degree in Applied Physics. She completed her undergraduate internship at Analog Devices International, going on to complete her undergraduate thesis with the company.

About University of Limerick:

University of Limerick, Ireland, with more than 14,000 students and 1,400 staff is an energetic and enterprising institution with a proud record of innovation and excellence in education, research and scholarship. The dynamic, entrepreneurial and pioneering values which drive UL's mission and strategy ensures that it capitalises on local, national and international engagement and connectivity.

About the Bernal Institute:

The Bernal Institute at the University of Limerick was established in 2016 and is comprised of more than 300 researchers in applied science and engineering. The Institute's research focuses on advanced materials, manufacturing and process engineering. The Institute is housed in 20,000 square meters of high-quality, multi-purpose research space and has received over €100 million in capital investment. The Bernal Institute is named after John Desmond Bernal, who was born in Nenagh, County Tipperary, Ireland and was one of the most influential scientists of the 20th Century. He pioneered the use of X-ray crystallography in molecular biology.

About Curam:

Curam is a Science Foundation Ireland academic-industry-clinical 'super centre' designing the next generation of 'smart' medical devices. With six academic partners and more than 24 industry partners, Curam is establishing a global hub of research expertise in medical device technology. Curam's innovative approach incorporates biomaterials and drug delivery, tissue engineering and regenerative medicine, glycoscience and device design to enhance, develop and validate both traditional and new combinational medical devices from molecular design to device manufacturing.

Media Contact

Nicola Corless
nicola.corlesss@ul.ie
353-861-414-640

 @UL

http://www.ul.ie 

Nicola Corless | EurekAlert!

Further reports about: biomaterials crystals electricity glycine medical devices

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>